Biochemistry Team 434

Lipoproteins and Atherosclerosis

Biochemistry434@gmail.com

Introducton

A key element for cholesterol homeostasis is the balance between:

cholesterol transport from liver _____peripheral tissue by LDL (bad cholesterol carrier)

reverse cholesterol transport from peripheral tissue ____liver by HDL (good cholesterol carrier) Imbalance results in cholesterol deposition in the wall of blood vessels, thickening of the wall and narrowing of the lumen "Atherosclerosis"

composition of LDL and HDL

Low density lipoprotein (LDL)

Mostly free cholesterol

High density lipoprotein (HDL) Mostly cholesterol ester More % protein More % phospholipids

low density lipoproteins LDL

-Produced in the circulation as the end product of VLDLs

-compared to VLDLs: -It contains only apo B-100 -Smaller size and more

dense

- Less TG

- More cholesterol & cholesterol ester

-Transport cholesterol from liver to peripheral tissues -Uptake of LDL at tissue level by

- LDL receptor-mediated endocytosis Recognized by apo B-100

LDL metabolism

Receptor-Mediated Endocytosis

High Density Lipoproteins (HDL) (produced by intestine & liver)

Reverse Cholesterol Transport

Uptake of Cholesterol

(from lipoproteins & cell membranes)

HDL is suitable for **uptake of cholesterol** because of **high content of PC** that can:

1- Solubilize cholesterol.

2- Act as source of fatty acid for cholesterol esterification.

Reservoir of Apoproteins

Apo C-II & E to VLDL

Esterification of Cholesterol

- -Enzyme: PCAT/LCAT
- -Activator: Apo A-I

Functions of

HDL

- -Substrate: Cholesterol
- -Co-substrate: PC
- -Product: Cholesterol ester (& Lyso-PC)

Why HDL Good Cholesterol Carrier?

⇒ Inverse relation between plasma HDL levels & Atherosclerosis

Reverse Cholesterol Transport Involves:

1- Efflux of cholesterol from peripheral tissues and other lipoproteins to HDL₃.

2- Esterification of cholesterol and binding of HDL₂ to liver and steroidogenic cells (by scavenger receptor class B (SR-B1)).

3- Selective transfer of cholesterol ester into these cells.

4- Release of lipid-depleted HDL₃.

Atherosclerosis (pathogenesis & plaque formation)

Laboratory Investigation of Atherosclerosis

Serum Lipid Profile: 10-12 hours (O/N) fasting

Measurment of:

- 1- Serum Triglyceride level >> reflect >> Chylomicron + VLDL levels
- 2- Serum Total Cholesterol level >> reflect >> LDL + HDL levels
- **3- Serum HDL-Cholesterol**
- 4- Serum LDL-Cholesterol

Others:

Serum lipoprotein electrophoresis Serum apoprotein levels e.g., Apo-B

LDL-Related Diseases

(hyperlipoproteinemia)

LDL-Receptor : to develop atherosclerosis tightly regulated there is an imbalance between : high affinity -1- cholesterol transport from endocytosis peripheral to the liver (HDL) ends with degradation of -Action LDL into (amino acids -2- cholesterol transport from fattyacids the liver to the peripheral phospholipids) (LDL) release of cholesterol. -HDL: has an inverse relation Atherosclerosis: Laboratory Investigations: with atherosclerosis: 1- Serum lipid profile: oxidized form of LDL. Nascent HDL Uptake of oxLDL by Serum triglyceride level Mature HDL macrophage scavenger (VLDL -chylomicron) function: receptor (lower affinity) Serum total cholesterol **Reservoir of apoproteins** -Foam cell level (HDL - LDL) Esterification of Serum HDL-cholesterol transformation cholesterol Atherosclerotic plaque level _ Uptake of cholesterol - 1 formation Serum LDL-cholesterol **Reverse cholesterol** level transport

Quiz your knowledge

https://www.onlineexambuilder.com/lipoprotein-atherosclerosis/exam-23821

Some videos might help

lipoprotiens

https://www.youtube.com/watch?v=97uiV4RiSAY&spfreload=10 https://www.youtube.com/watch?v=wnK1Kv3XkZI&spfreload=10

Atherosclerosis

https://www.youtube.com/watch?v=fLonh7ZesKs&spfreload=10

Biochemistry Team 434

Done by:

Mohammad Al Sabeeh Noha AlGwaiz Anas AlZahrani Sarah AlJasser Abdulaziz AlSaud Mohammad almashouq reema alhammad

Biochemistry434@gmail.com