
Shock

Explained in Guyton Chapter 24

Shock

Inadequate tissue perfusion with: relatively or absolutely inadequate cardiac output.

Loss of volume

Due to:

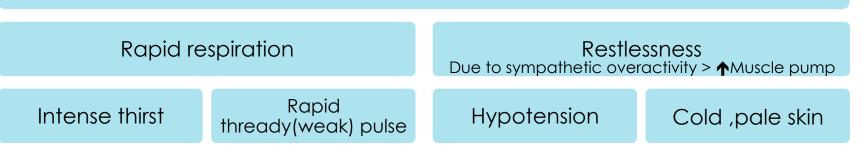
✓ Hemorrhage.

🗸 Trauma

✓ Surgery

Plasma loss

As in burns


OR

Fluid loss

Due to: ✓ Severe Vomiting ✓ Diarrhea

Pathophysiology of Hypovolemic Shock

According to the cause, hypovolemic shock is subdivided into; Hemorrhagic, Traumatic, Surgical, Burn shock.

Types of Shock

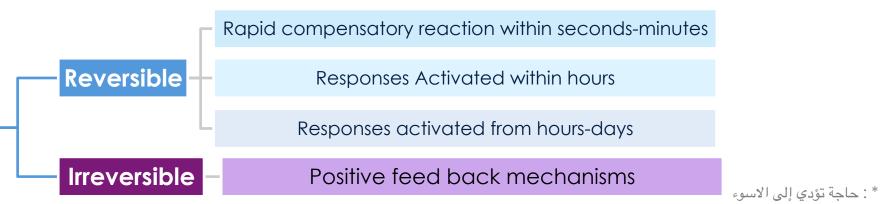
Cardiogenic shock	 ♦ Results from inadequate output caused by a diseased or insulted heart, such as: ✓ Myocardial infarction ✓ Congestive heart failure ✓ Arrhythmias
Distributive shock	 Also called vasogenic, low resistance shock The blood is accumulated in a place other than the place its normally present in, so its supposed to be in the circulation but it went to the periphery. There is marked vasodilation caused by: Anaphylaxis: (due to antigen-antibody reaction, e.g drug-induced) Sepsis Neurogenic: Vasovagal*, acute venous dilation, *: Is a malaise mediated by the vagus nerve. When it leads to syncope or "fainting".
Obstructive shock	 Due to obstruction to the flow of the blood: Tension pneumothorax is the progressive build-up of air within the pleural space. Pulmonary embolism blockage in one of the pulmonary arteries in lungs, caused by a traveled blood clots.

You Tube

Treatment of Shock

Most important is the treatment of the cause of the shock

Classification	Treatment
Hypovolaemic	Rapid infusion of volume-expanding fluids : whole blood, plasma, plasma substitutes, isotonic electrolyte solutions
Cardiogenic	As for hypovolaemic shock (but smaller volumes and not rapid) + administration of cardiac drugs that enhance contractility.
Distributive	 As for hypovolaemic shock Antibiotic for septic shock Epinephrine & anti-histaminergic drugs for anaphylatic shock Sympathomimetic drug for neurogenic shock
Obstructive	Removal of obstruction. e.g., pericardiocentesis in cardiac tamponade and oxygen. anti-coagulation and oxygen in pulmonary embolism.


Stages Of Shock

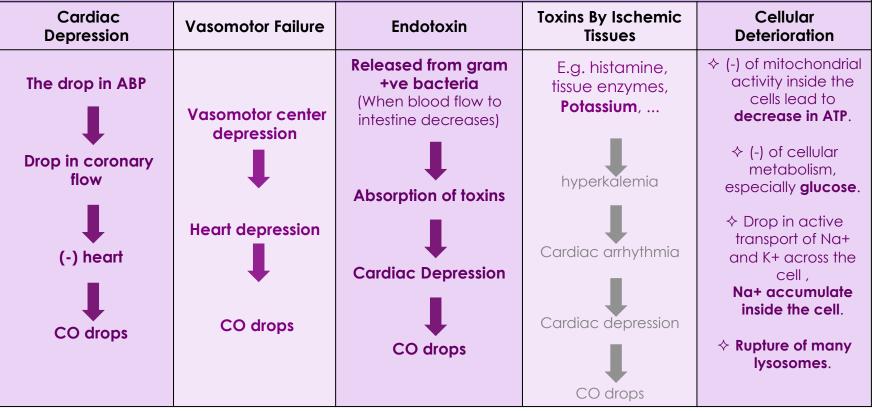
\diamond Reversible stage

In which **compensatory reactions & appropriate treatment help** restoration of blood pressure & blood loss.

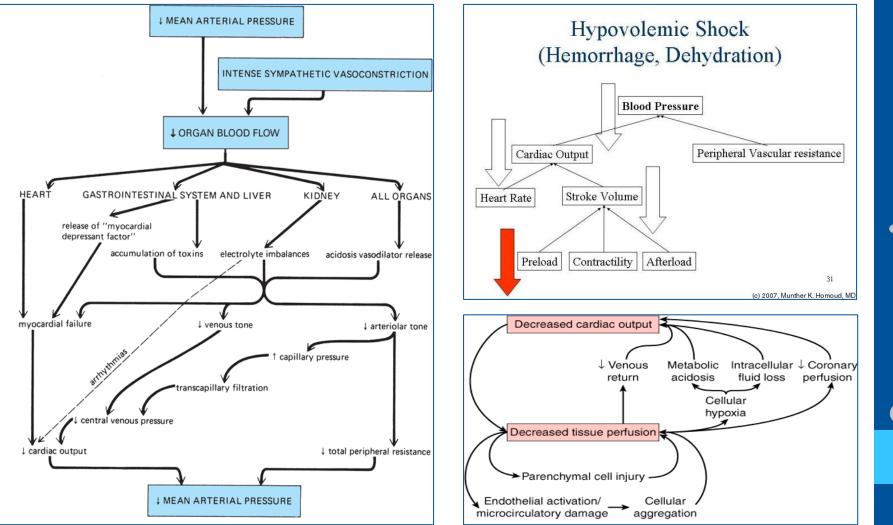
♦ Irreversible Stage

In which a series of **positive feed back mechanisms**^{*} **take place** leading to further deterioration & tissue hypoxia. This depends on amount of blood lost. When blood loss is excess and not immediately replaced and proper treatment is delayed → this stage is reached and the patient may die. There is also **failure of compensatory**

Reversible Stage


Seconds to Minutes	Within Hours	Hours to Days
 ◇ Release of vasoconstrictor factors/hormones: ○ Catecholamines by adrenal medulla. ○ Vasopressin (ADH¹) by posterior pituitary, <u>causes:</u> ✓ Vasoconstriction. ✓ Restores fluid volume by reducing urine output. ○ Renin-angiotensin-aldosterone. ✓ Preserve salt and water 	Increased movement of interstitial fluid into capillaries (Capillary fluid shift) Fluid from ECF will move to the vessels	 Restoration of plasma proteins, occurs in 2 stages: Rapid entry of preformed albumin from extracellular stores. Hepatic synthesis of proteins over 3-4 days.
 Tachycardia produced by: Baroreceptor reflex. Chemoreceptor reflex. Increased sympathetic activity. 	 ◆ Increased secretion of glucocorticoids by adrenal cortex ✓ Help to maintain blood sugar 	 ♦ Restoration of RBCs ✓ Increase RBCs count in response to erythropoietin within 10 days. ✓ Restoration of red cell mas within 4-8 weeks.

Reversible Stage cont.						
Seconds to Minutes	Within Hours	Hours to Days				
 ♦ VENOconstriction, caused by: o Sympathetic activity ♦ Importance: ✓ Maintain filling pressure of the heart. ✓ Shift blood from reservoirs (veins) into the circulation. 	 ◇ Increased 2,3 DPG concentration in RBCs ◇ Importance: ✓ Help HB deliver more O2 to the tissues. (shift O2 dissociation curve to the right) 					
 ◆ Tachypnea, caused by: Activation of chemoreceptor reflex. Sympathetic overactivity. ♦ Importance: ✓ ↑O2 delivery ✓ ↑Thoracic pump > ↑VR ♦ Vasoconstriction, produced by: 	Vasoconstriction is man					
 Baroreceptor reflexes. Chemoreceptor reflex. Vasopressin-vasoconstrictor mechanism. Noreadrenaline-adrenaline vasoconstrictor mechanism (due to activation of adrenal medulla) 	♦ Heart and br	rain are spared in all this.				


Irreversible Stage

Positive Feedback Mechanisms

All lead to drop in CO

(-) = Decrease in function or dead.

Summaries

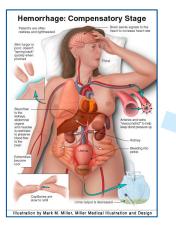
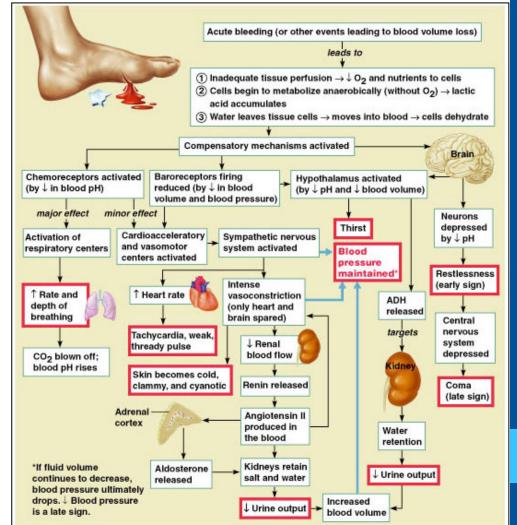



Illustration by Mark M. Miller, Miller Medical Illustration and Design

maries Sumi

MCQs

1-In almost all patients who have severe burns, so much plasma lost, the resulting condition is:

- A. Neurogenic shock
- B. Hypovolemic shock
- C. Septic shock
- D. Histamine shock

2- Positive feed back mechanisms is a marked sign of:

- A. Reversible shock stage
- B. Irreversible shock stage

3- Increase in glucocorticoids secretions help in:

- A.O2 transport
- B. Maintain iron in blood
- C. Maintain sugar in blood

Done by:

- ♦ Rasha Bassas
- ♦ Rana Alhumayemdi
- ♦ Nouf Almasoud

