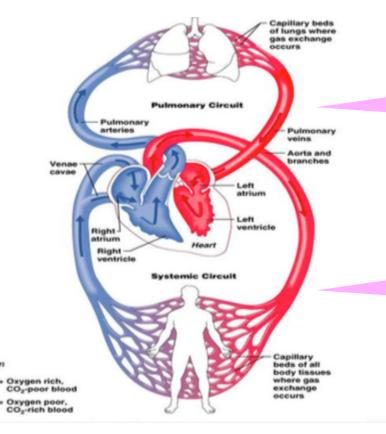


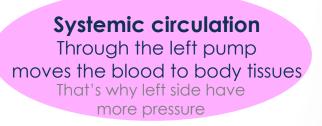
This lecture may NOT include all information we need for the exam, If you're studying for the exam. Better you study real slides first then revise and organize your thoughts here.

Cardiac Cycle 8


Explained in: -Guyton Ch.9 P.104 -Linda's Ch.4 P.148

Physiology Team

-Dr. Najeeb's videos for this lecture are highly recommended!


Pulmonary & Systemic Circulations

The heart contains two pumps (left and right) that divide the circulation of blood into :

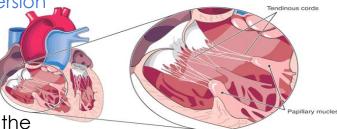
Pulmonary Circulation

Through the right pump moves the blood to the lungs

♦ Each pump consist of one atrium and one ventricle

Valves of The Heart

- \diamond Found at entry & exit of each ventricle \rightarrow Allow blood to flow in ONLY ONE direction.
- Opening & closing of valves occur as a result of pressure gradient across the valves
- ♦ A-V cusps are held by chordae tendinea to muscular projections called Papillary muscles:
 - ✓ Papillary muscles limit valve movements & prevent eversion
 - ✓ Papillary muscles don't open or close the valve.


Atria of The Heart

- Atrial counteraction causes an additional filling (20%) of the ventricles. Therefore the atria simply functions as a primer pumps that increases the ventricular pump effectiveness.
- In some phases atrium passively add blood to ventricle(80%) acting as "Link or tunnel" passing the blood. (Rapid and reduced filling Phases)

Ventricles of The Heart

♦ Main **pump** for the cardiac cycle

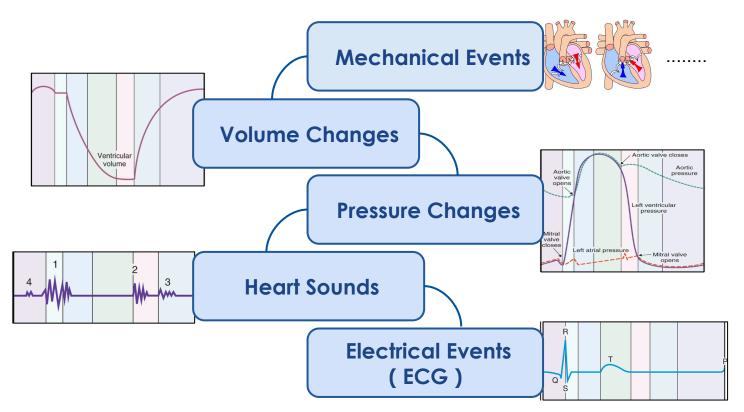
Here are some great videos you may want to watch to get a proper understanding of the cardiac cycle =)

You

Youtube link for dr.Najeebs' cardiac cycle videos: http://youtu.be/XbivIaFPoQI

Videos done by Med433: http://voutu.be/5iaxRhfuKT4 Diastole Tube http://youtu.be/o2y8e5-gbxc Systole

You


To help you imagine the circulation: https://www.youtube.com/watch?v=jLTdgrhpDCg https://www.youtube.com/watch?v=5tUWOF6wEnk

General Principles

- Contraction of the heart generates pressure changes.
- \checkmark Resulting in orderly blood movement.
- ♦ Blood flows from an area of high pressure to an area of low pressure.
- \diamond Events in the right & left sides of the heart are the same,
- But with lower pressures in the right side.
- \diamond When AV value open, semilunar value close & vice versa,
- \diamond Heart is a double pump (right & left sides) that work together.

Cardiac Cycle

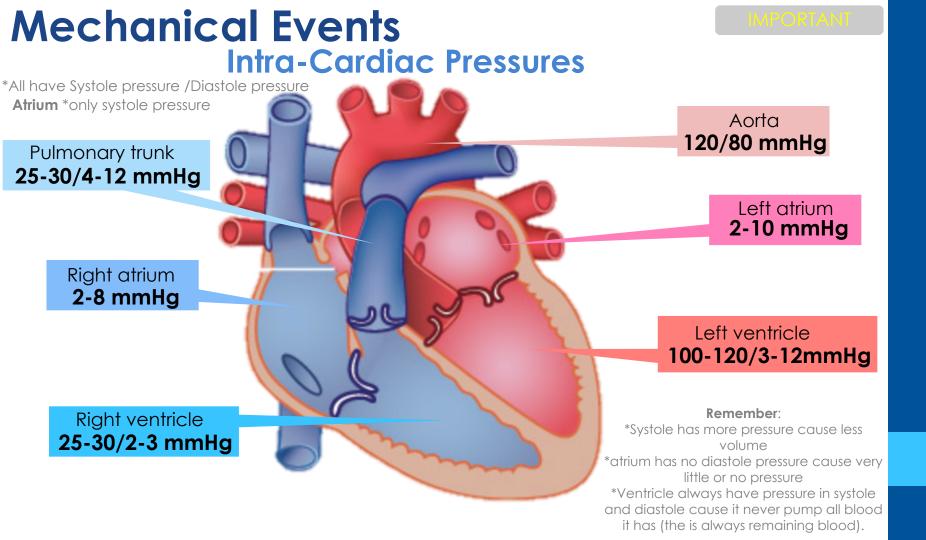
It's the sequence of events that place in the heart in each beat The cardiac cycle last 0.8 seconds^{*} (when heart rate 72 bpm)

*The cardiac cycle is shortened (< 0.8 s) when the heart rate increases

Mechanical Events

- ♦ Each heartbeat consists of two major periods:
- ✓ Systole = Contraction
- ✓ Diastole = Relaxation

Atrial Systole = 0.1 sec Diastole = 0.7 sec


The importance of long ventricular diastole:
 ✓ coronary blood flow.
 ✓ ventricular filling

Ventricular Systole = 0.3 sec Diastole = 0.5 sec

*Adding systole and diastole will give you the total amount of cardiac cycle 0.8

♦ Detentions:

✓ End-diastolic volume (EDV): Volume of blood in ventricles at the <u>end of diastole 110-130 ml</u>
 ✓ Stroke volume (SV): Amount of blood <u>ejected</u> from ventricles during systole 70 ml/beat
 ✓ End-systolic volume (ESV): Amount of blood left in ventricles at the <u>end of systole 40-60 ml</u>
 ✓ Ejection fraction (EF): Fraction of end-diastolic volume that is ejected 60-65 %

Mechanical Phases:

Ventricular Diastole				ntricular Systole	
	Early Ventricular Diastole 0- Protodiastolic Phase (is no longer mentioned)			etric contraction phase	2
	1- Isometric relaxation phase (Passively from atrium)			duced ejection phase	
Mid \	/entricular	Diastole			
3- Reduced fil	ling phase	(Passively from atrium)			
Late Ventricular Diastole 3-Atrial systole					
PROTODIASTASIS		ATRIAL SYSTOLE ATRIAL SYSTOLE DIASTASIS (REDUCED FILLING PHASE)	ISOMETRIC CONTR. RAPID EJECTION PHASE REDUCED EJECT PHASE VENT. PRI B/W END VENT. CONT. AORTICO. PHASE ISOMETRIC RELAXA- TION PHASE PROTODIASTIC	ESS. OF R. & COSURIE	

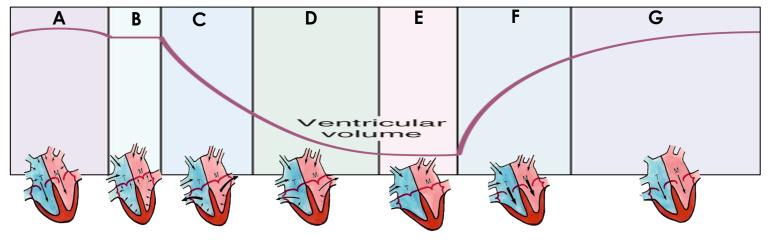
Mechanical Phases (Systole)

Major events are in **bold**

W/W	MUL	W IUI
Isovolumetric Ventricular Systole	Rapid Ventricular Ejection	Reduced Ventricular Ejection
A-V are closed	A-V are closed	A-V are closed
Semilunar closed	Semilunar are opened	Semilunar are opened
-Diastole -Receiving blood from lungs.	-Diastole -Receiving blood from lungs. -Pressure slowly increases.	-Diastole -Receiving blood from lungs -Pressure slowly increases.
-Depolarization -Contraction -No change in volume=(EDV) -Pressure increases↑ higher than atrial pressure (which caused AV valve to close), it will increase until reaching 80mmhg (aortic pressure)	-Contraction -75% of ventricular blood is ejected. -Volume of ejected blood = Stroke Volume = 70ml -Volume Decreases♥ -Pressure increases↑ (maximum) -Aortic pressure increases	-Repolarization -25% of ventricular blood is ejected in slow rate -Volume decreases slowly -Pressure decreases ↓< aortic Pressure -Aortic pressure increases
1 st heart sound	-	-
0.04 sec	-	-
	Ventricular Systole A-V are closed Semilunar closed Semilunar closed -Diastole -Piastole -Receiving blood from lungs. -Depolarization -Contraction -No change in volume=(EDV) -Pressure increases higher than atrial pressure (which caused AV valve to close), it will increase until reaching 80mmhg (aortic pressure) 1st heart sound	Ventricular SystoleEjectionA-V are closedA-V are closedSemilunar closedSemilunar are openedSemilunar closedSemilunar are opened-Diastole -Receiving blood from lungsDiastole -Receiving blood from lungs. -Pressure slowly increasesDepolarization -Contraction -Contraction -Pressure increases higher than atrial pressure (which reaching 80mmhg (aortic pressure)-Contraction -Tressure increases (maximum) -Aortic pressure increases1st heart sound-

N	Mechanical Phases (Diastole) Major events are in bold					
A A	Isovolumetric Ventricular Diastole	Rapid Ventricular Filling	Reduced Ventricular Filling (Diastasis)	Atrial Systole		
Valves	A-V valves are closed	A-V valves are opened	A-V valves are opened	A-V are opened		
Val	Semilunar valves closed	Semilunar valves are closed	Semilunar valves are closed	Semilunar closed		
Atria	-Still receiving blood - Increased pressure ↑	-60%-70% of blood moves passively to ventricles -Pressure start to decrease ↓↓	-10% of blood trickles to ventricles -Pressure decreases ♥	-Depolarization -Contraction -20%= 40ml atrial blood to ventricles actively -Pressure increases↑		
Ventricles	-Repolarization -Relaxation -No change in volume = (ESV) -Decreased pressure ♥ (minimum)	-Relaxation -Receiving blood -Volume increases ↑↑ Pressure start to increase ↑↑	- Relaxation -Still receiving blood -Volume increases↑ -Pressure increases↑ -Aortic pressure decreases	-Relaxation -Receiving blood -Increase volume↑ -(pressure increases)↑		
	2nd heart sound	3rd heart sound (Mainly in children)	-	4th heart sound (In elderly & pathological conditions)		
Ċ	0.04 sec	_	_	0.1 sec		

Cardiac Cycle Timing


Although the events of the cardiac cycle on the two sides of the heart are similar, they are somewhat **asynchronous**¹.

- ✓ Right atrial systole precedes left atrial systole.
- ✓ Contraction of the right ventricle starts after that of the left
 Why? Since pulmonary arterial pressure is lower than aortic pressure.
- ✓ During inspiration: The aortic valve closes slightly before the pulmonary. Why? Due to lower impedance of the pulmonary vascular tree
- ✓ When measured over a period of minutes, the outputs of the two ventricles are equal. BUT <u>transient² differences</u> in output during the respiratory cycle occur in normal individuals.

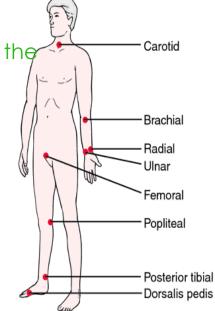
1: Not existing or occurring at same time 2: Last for a short time.

Volume Changes in Cardiac Cycle

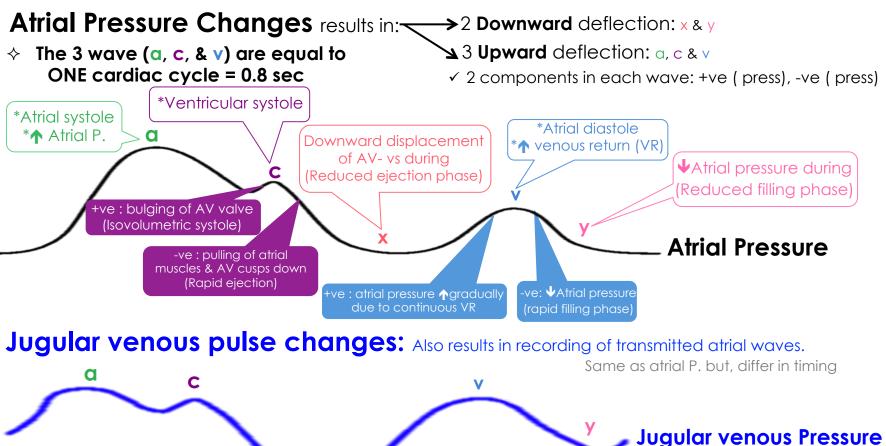
		Phase	Ventricular Volume
	Α	Atrial Systole	Increases 🛧
SYSTOLE	В	Isovolumetric Ventricular Contraction Phase	Constant
SYST	С	Rapid Ventricular Ejection Phase Rapidly decreases	
	D	Reduced Ventricular Ejection Phase Slowly decreases	
OLE	E	Isovolumetric Ventricular Relaxation Phase	Constant
DIASTOLE	F	Rapid Ventricular Filling Phase Rapidly increases	
	G	Reduced Ventricular Filling Phase Slowly increases	

Pressure Changes in Cardiac Cycle

₽	Ventricular Aortic Press		dia d the tab w on the	ole and	vcle	Notice at the end of this phase, the AP is higher than the VP (Aortic valve closes)
A	Atrial Systole	VP : Starts from 3 mmHg up to 15 mmHg Aortic P: Constant (80 mmHg) AP: Start from 3 mmHg up to 15 mmHg (a wave)		120 -	A B C	D E F G Aortic valve closes
В	Isovolumetric Ventricular Contraction	VP: 15-80 mmHg Aortic P: Constant (80 mmHg) AP: A slight increase (c wave)		- 100 —	Aortic	Aortic
с	Rapid Ventricular Ejection	VP: 80-120 mmHg Aortic P: Ascending or anacrotic limb (80-120 mmHg Why? due to the opening of the aortic valve AP: Continuous increase (v wave)		- (6 80 –	valve opens	
D	Reduce Ventricular Ejection	VP: Slowly decreases (120-110 mmHg) Aortic P: Descending or catacrotic limb (120-111 mr AP: Continuous increase (v wave)	mHg)	Pressure (mm Hg)		Left ventricular pressure
E	Isovolumetric Ventricular Relaxation	VP: Rapid decrease (110-15 mmHg) Aortic P: Dicrotic notch (incisura) Why? due to the closure of the aortic valve AP: continuous increase (v wave)		ss - L 40 -	Mitral	
F	Rapid Ventricular Filling Phase	VP: A slight decrease (15-3 mmHg) Aortic P: Dicrotic wave Why? Due to the elastic recoil of the aorta AP: A slight decrease (end of v wave)		20 -	closes	rial pressure Mitral valve
G	Reduce Ventricular Filling	VP: A slight increase Aortic P: Decrease up to 80 mmHg AP: A slight increase		0	av _c .	opens


Pressure Changes in Cardiac Cycle

			-			
	Left Ventricles	Aorta	Pulmonary Artery	Peripheral Arteries		
Maximum Systolic	120 mmHg	120 mmHg	25-30 mmHg	110-130 mmHg		
Minimum Diastolic	3-15 mmHg	80 mmHg	4-12 mmHg	70-85 mmHg		
	Similar to aortic pressure waves but diff. in magnitude Similar to aortic pressure waves but sharper					
Ascending or anacrotic limb (Rapid ejection phase)						
120 Nectoric Press (Reduced ejection phase) Blood entering < leaving Dicrotic Wave *Aortic elastic recoil *Slight Aortic Pressure *Continued flow of blood from acrta to systemic circulation Diacrotic notch						
80 Closure of Aortic valve *Closure of Aortic valve *Drop in aortic pressure *End of V-systole *End of V-systole * Mean Pressure = diastolic P + 1/3 (pulse pressure = Systolic P – Diastolic P) * Pulse pressure = Systolic P – Diastolic P						


Arterial Pulse

Forcing of the blood into the aorta during systole not only moves the blood in the vessels forward but also sets up a pressure wave that travels along the walls of the arteries.

- The pressure wave expands the arterial walls as it travels, and the expansion is palpable as the **pulse**.
- The rate at which the wave travels is independent and much higher than the velocity of blood flow.
- ✓ the pulse is felt in the radial artery at the wrist about 0.1 s after the peak of systolic ejection into the aorta.
- With advancing age, the arteries become more rigid, and the pulse wave moves faster.
- The strength of the pulse is determined by the pulse pressure bears little relation to the mean pressure.
- When the aortic valve is incompetent (aortic insufficiency), the pulse is particularly strong, and the force of systolic ejection may be sufficient to make the head nod with each heartbeat. The pulse in aortic insufficiency is called a collapsing, Corrigan, or water-hammer pulse.

Pressure Changes in Cardiac Cycle

The Electrocardiogram

They are electrical voltages generated by the heart and recorded by the electrocardiograph from the surface of the body.

*Where is atrial repolarization? Maxed by the QRS complex.

Appear as a result of electrical depolarization of the ventricles, which initiates contraction of the ventricles and causes the ventricular pressure to begin rising. (Before the Isovolumetric contraction)

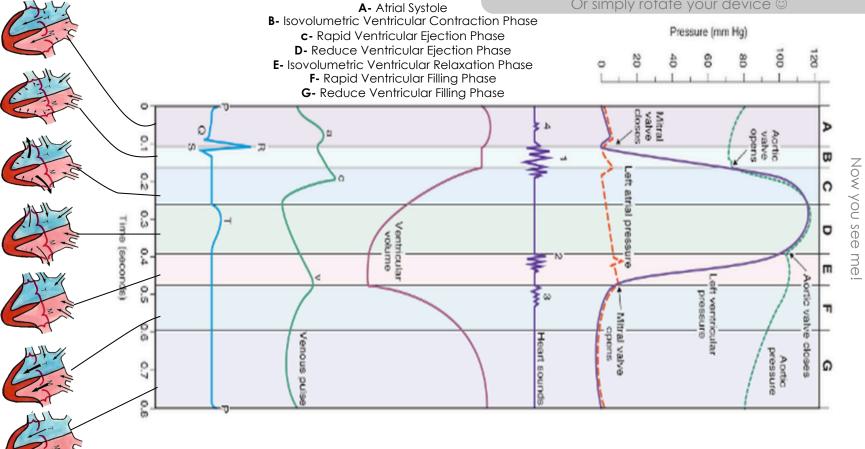
1

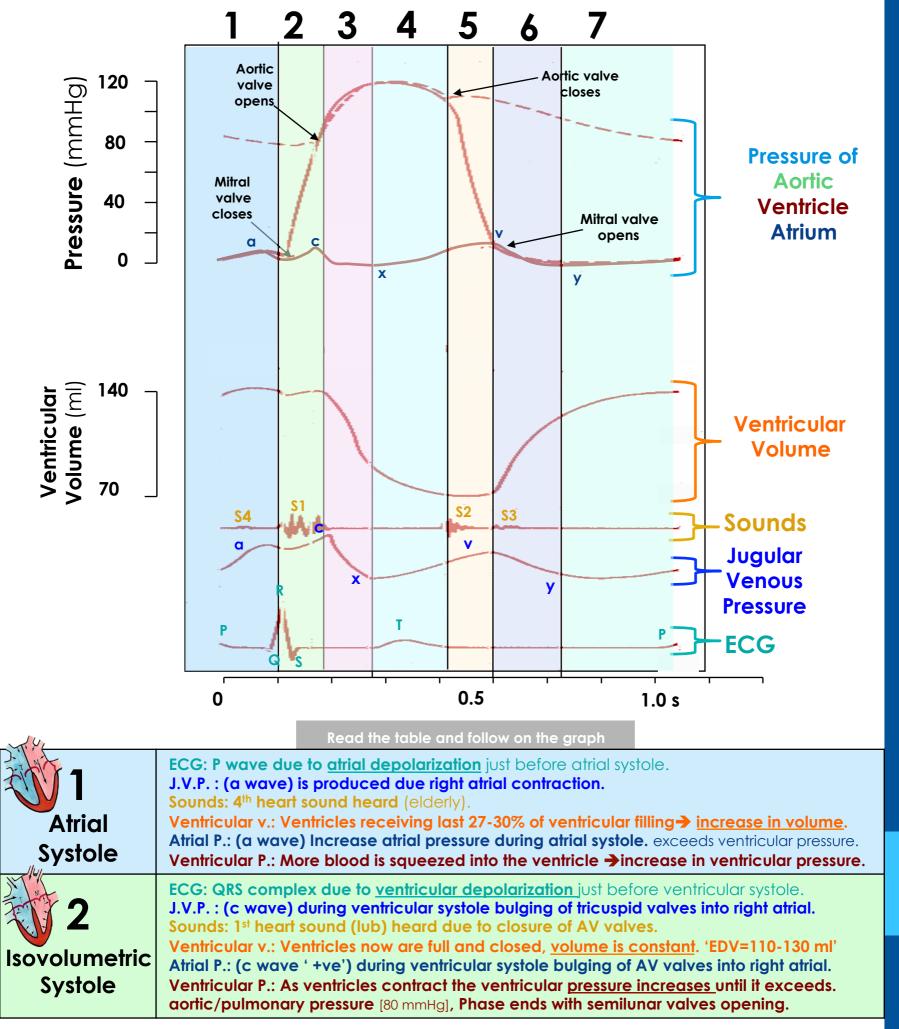
Wave

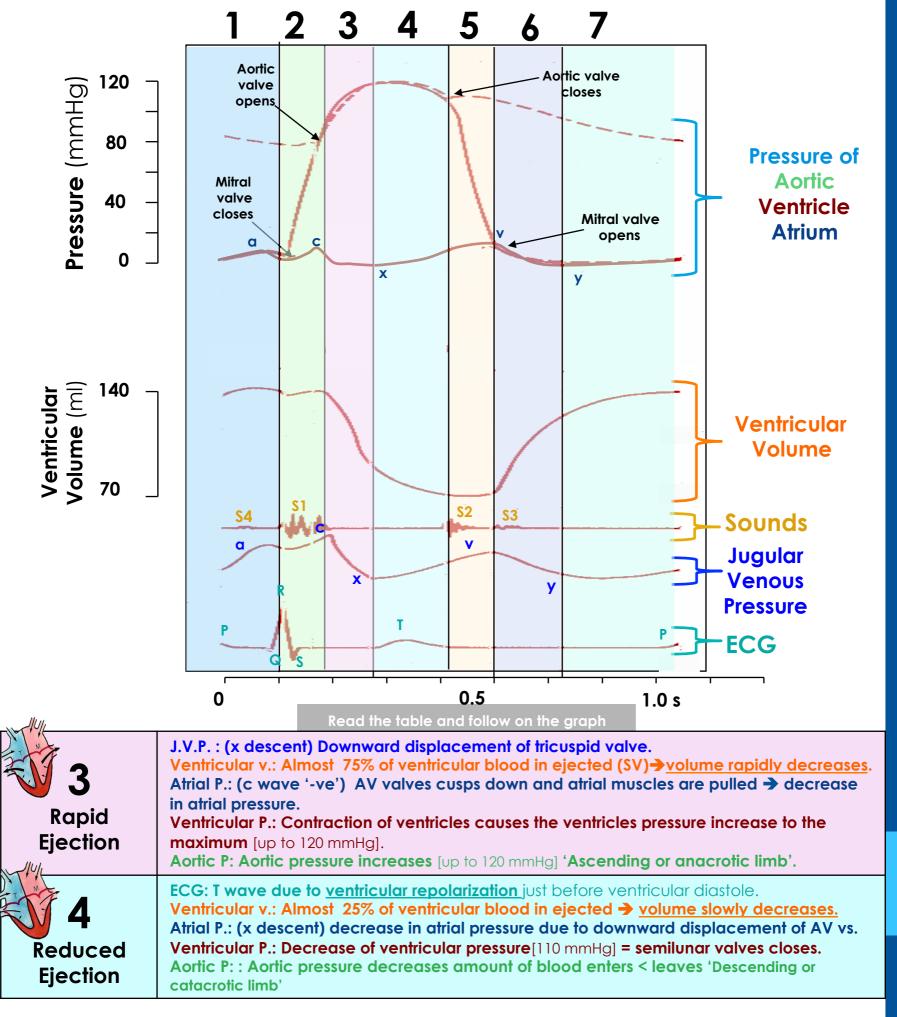
QRS

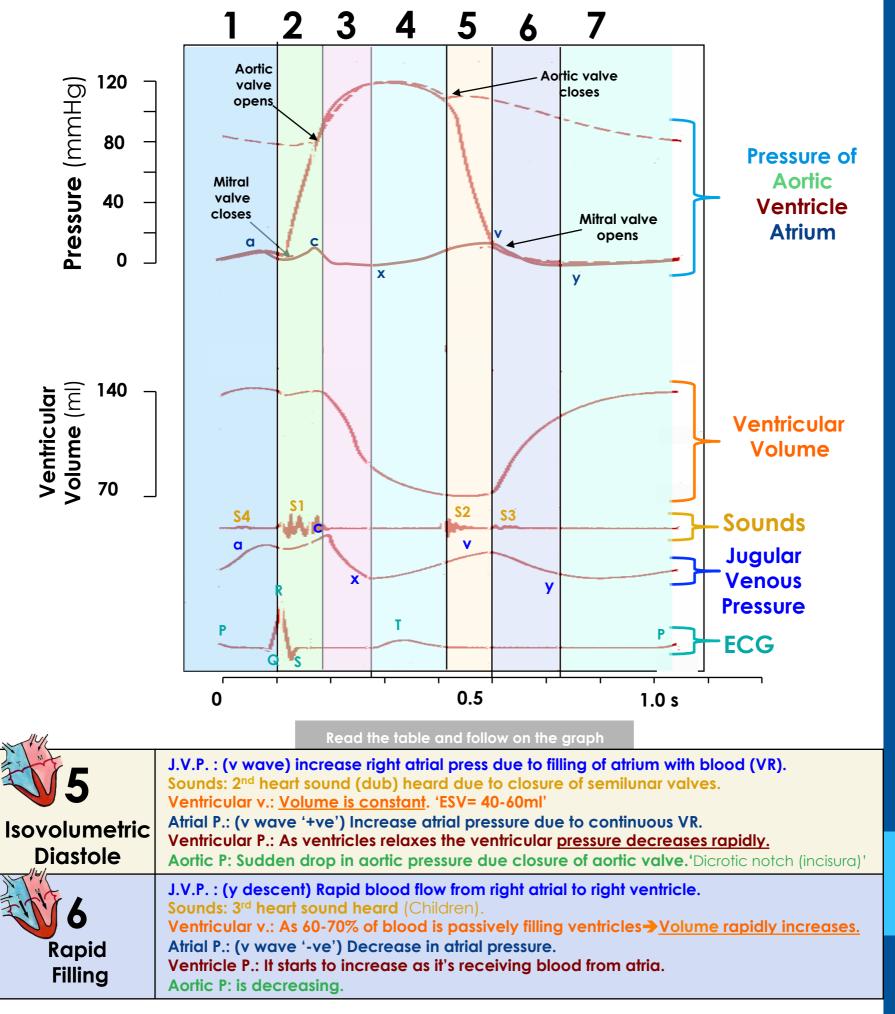
Wave

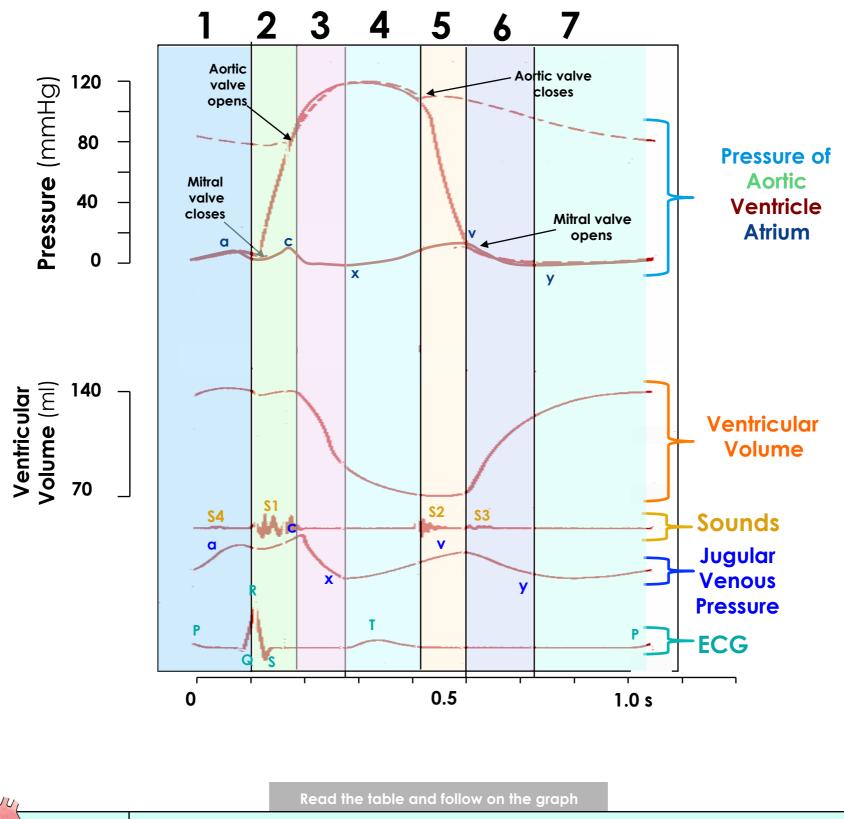
Caused by spread of depolarization through the atria, and this is followed by atrial contraction, which causes a slight rise in the atrial pressure curve. (Before the Atrial Systole) The stage of **repolarization** of the **ventricles** when the **ventricular muscle** fibres begin to relax. Therefore, the T wave occurs slightly before the end of ventricular contraction. (Before the Ventricular Diastole)

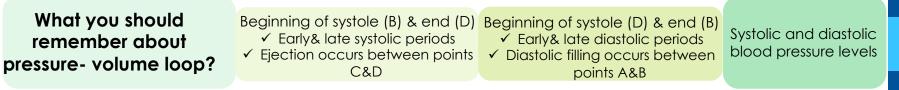

3


Wave

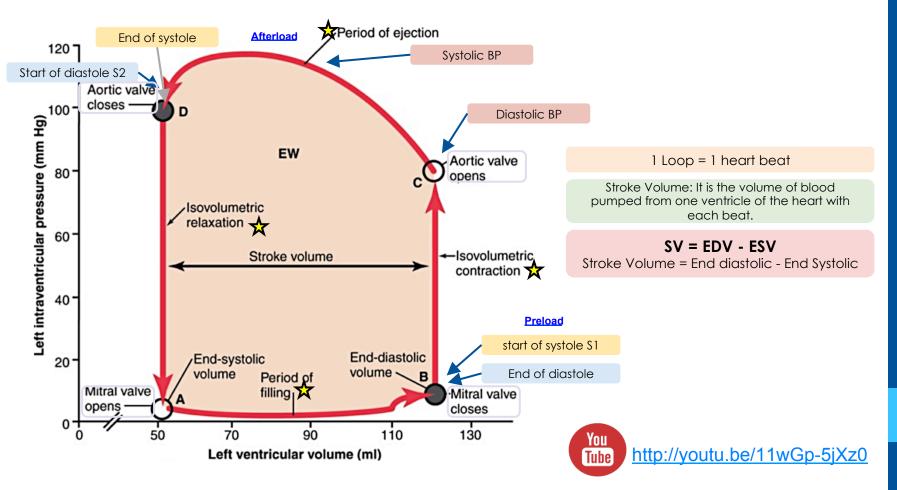

1: SA Node fire 2: AV Node delay 3: Isoelectric line


The complete picture


I think you need to do some exercise by rotating your head to the right. So you can see the complete picture... Or simply rotate your device ©



Ventricular v.: Blood flows slowly to ventricles -> volume increases slowly.
 Atrial P.: (y descent) decrease in atrial pressure.
 Ventricle P.: Is gradually increasing.
 Aortic P: Continue to decrease [up to 80 mmHg] due to flow of blood from aorta to systemic circulation.


Left Ventricular Pressure-Volume Loop

It is the measure for the correlation of intra-ventricular changes in volume & pressure that occur during one cardiac cycle

Basic Myocardial Muscle Mechanics				
Systole	Diastole			
Muscle contracts & generates pressure which cause changes in volume	Muscle is relaxed & venous blood returns to the heart resulting in changes in absolute volume and pressure			
 Early phase: isovolumetric contraction Late phase: isotonic contraction = ejection phase 	 Early phase: isovolumetric relaxation Late phase: isotonic relaxation = filling phase 			
Ventricular systole is measured by (contractility)	Ventricular systole is measured by $(compliance) = (C = \Delta V / \Delta P)$			
 Affected by: ✓ Function of the muscle ✓ Initial volume (preload) 'Directly proportional to it' ✓ Initial pressure (afterload) 'Inversely proportional to it' 	 Affected by: ✓ Connective tissue ✓ Venous pressure ✓ Venous resistance 			

Left Ventricular Pressure-Volume Loop

MCQs

1- During isometric contraction phase the ventricular volume:

- A. Increases
- B. Rapidly increases
- C. Slowly decreases
- D. Doesn't change
- E. Decreases

2- During the rapid ejection phase the ventricular pressure:

- A. 80-120 mmHg
- B. 0 mmHg
- C. 15-30 mmHg
- D. Doesn't change

3- Which pairing is INCORRECT?

A. 3rd heart sound - ElderlyB. 1st heart sound - closure of AV valvesC. left atrium - pulmonary veinsD. EDV - isometric contraction phase

Done by:

- ♦ Amerah Mansour
- ♦ Meshael Hussain
- ♦ Razan Alsubhi
- ♦ Rana Aljunaidel

- ♦ Rawa Alohali
- ♦ Nora Alhelali
- ♦ Najla Aldraiweesh
- ♦ Reem Labani

- 4- QRS-complex occurs during
- A. Atrial depolarizationB. Ventricular depolarizationC. Atrial repolarization

5- Atrial systole accounts for most of the ventricular filling.

A. True B. False

6- Which one of the following is an early phase of systole? A. Atrial systole

- B. Isovolumeric systole C. Reduced ejection
- D. Rapid filling

- ♦ Malak Alkhathlan
- ♦ Nouf Almasoud
- Revised by:
 - ♦ Abdullah Alfaleh