

Arrhythmias

Explained in: Guyton Chapter 10

Normal Sinus Rhythm

♦ Regular
 ♦ Single P-wave precedes every QRS complex
 ♦ P-R interval is constant and within normal range
 ♦ P-P interval is constant

Causes of Cardiac Arrhythmias

- ♦ Abnormal rhythmicity of the pacemaker.
- \diamond Shift of the pacemaker from the sinus node to another place in the heart.
- ♦ Blocks at different points in the spread of impulse through the heart.
- ♦ Abnormal Pathways of impulse transmission through the heart
- ♦ Spontaneous generation of impulses in any part of the heart.
- \diamond Rate above or below normal.
- \diamond Regular or irregular rhythm.
- \diamond Narrow or broad QRS complex.
- ♦ Relation to P waves. P is the most important wave

Abnormal Sinus Rhythm

Tachycardia:

An <u>increase</u> in the heart rate. ♦ Heart rate > 100 beats/minute.

♦ <u>Causes:</u>

- ✓ Increased body temperature.
- ✓ Sympathetic stimulation.
- ✓ Drugs: Digitalis
- \checkmark Inspiration

Bradycardia:

♦ Slow in the heart rate.
♦ Heart rate < 60 beats/minute.

♦ <u>Causes:</u>
✓ Parasympathetic stimulation
✓ Expiration

24 year-old pregnant woman with three days of frequent vomiting (Tachycardia)

Sinus Arrhythmia

- Result from spillover of signals from the medullary respiratory center into the adjacent vasomotor center during inspiratory and expiratory cycles of respiration.
- The spillover signals cause alternate increase and decrease in the number of impulses transmitted through the sympathetic and vagus nerves to the heart

Abnormal Cardiac Rhythms that Result from Impulse Conduction Block

\diamond Sinoatrial Block

- ✓ The impulse from the SA-node is blocked before it enters the atrial muscle.
- \checkmark Cessation¹ of P waves
- ✓ Ischemia of the A-V node
- ✓ Compression of the A-V node by scar formation
- ✓ Inflammation of the A−V node
- \checkmark Strong vagal stimulation

AVRT*-Narrow Complex

*: AtrioVentricular Reentrant (or Reciprocating) Tachycardia

Abnormal Cardiac Rhythms that Result from Impulse Conduction Block

- ♦ A-V Block: When impulse from the S-A node is blocked
- ♦ <u>Causes:</u>
- \checkmark Ischemia of the A-V node.
- \checkmark Compression of the A-V node by scar formation.
- ✓ Inflammation of the A-V node.
- \checkmark Strong vagal stimulation.

♦ Types of A-V block:

- ✓ First Degree Block
- ✓ Second Degree Block
- ✓ Third degree block (complete)

Types of A-V Block:

First Degree Block

♦ Prolong P-R interval (0.2 seconds)

Second Degree Block

- ♦ P-R interval > 0.25 second
- ♦ Only few impulses pass to the ventricles
- ✓ Atria beat faster than ventricles
- ✓ "Dropped beat" of the ventricles

Third Degree Block (complete)

♦ Complete dissociation of P wave and QRS waves

- Ventricle escape from the influence of S-A node
- Stokes-Adams Syndrome: AV block comes and goes
- ✓ Atrial rate is 100 beats/min
- Ventricular rate is 40 beats/min

Additiona

Premature Contraction

Premature contractions, extrasystoles, or <u>ectopic beat</u> result from ectopic foci that generate abnormal cardiac impulses (<u>pulse deficit)</u>

- Ischemia
- ✓ Irritation of cardiac muscle by calcified foci
- ✓ Drugs like caffeine
- ♦ Ectopic foci can cause premature contractions that originate in:
- \checkmark The atria
- ✓ A-V junction
- \checkmark The ventricles

- Short P-R interval depending on how far the ectopic foci from the AV node
- Pulse deficit if there is no time for the ventricles to fill with blood
- The time between the premature contraction and the succeeding beat is increased (Compensatory pause)

Premature Ventricular Contractions (PVCs)

- Prolong QRS complex because the impulses are carried out with myocardial fibers with slower conduction rate than Purkinje fibers
- Increase QRS complexes voltage because QRS wave from one ventricle can not neutralize the one from the other ventricle
- After PVCs, the T wave has an electrical potential of opposite polarity of that of the QRS because of the slow conduction in the myocardial fibers, the fibers that depolarizes first will repolarize first
- ♦ <u>Causes:</u>
- ✓ drugs, caffeine, smoking, lack of sleep, emotional irritations

Ventricular Fibrillation

- ♦ The most serious of all arrhythmias
- Mechanism: Impulses stimulate one part of the ventricles, then another, then itself. Many part contracts at the same time while other parts relax (Circus movement)
- ♦ <u>Causes:</u> Sudden electrical shock or Ischemia
- ✓ Tachycardia
- ✓ Irregular rhythm
- ✓ Broad QRS complex
- No P wave
- ♦ Treatment : DC shock

Atrial Fibrillation

- ♦ Serious but not deadly serious
- ♦ Mechanism: same as ventricular fibrillation
- ♦ In patients with enlarged heart.
- ♦ The atria do not pump if they are fibrillating
- The efficiency of ventricular pumping is decreased 20 to 30%
- ♦ A person can live for years with atrial fibrillation
- No P wave, or high frequency of low voltage P wave

Atrial Flutter

- A single large wave travels around and around in the atria
- The atria contracts at high rate (250 beats/ minute)

Ischemia and the ECG

One of the common uses of the ECG is in acute assessment of chest pain

- ♦ Cause: restriction of blood flow to the myocardium, either:
- ✓ Reversible: angina pectoris
- Irreversible: myocardial infarction

Ischemia → Injury → Infarction

Reversible ischemia

♦ Inverted T wave

♦ ST segment depression

Irreversible ischemia 'Myocardial Infarction' Complete loss of blood supply to the myocardium resulting in

necrosis or death of tissue

♦ <u>ST segment elevation</u>

Deep Q wave

Antero-Lateral MI

Potassium and the ECG

MCQs

1- Which on of the following is a cause of sinus bradycardia:

- A. Sympathetic stimulation
- B. Toxic condition of the heart
- C. Parasympathetic stimulation
- D. Increase body temperature E. both 1 and 3

2- When the conduction is poor in A-V node. the ventricle has been escaped, patient is having?

- A. First degree incomplete B. Second degree incomplete
- C. Third degree complete
- D. Electrical alternant

Done by:

- ♦ Hussain Alkaff
- ♦ Ahmad Alzahrani
- ♦ Abdullah Alfaleh
- ♦ Nouf Almasoud

BEST OF LUCK