

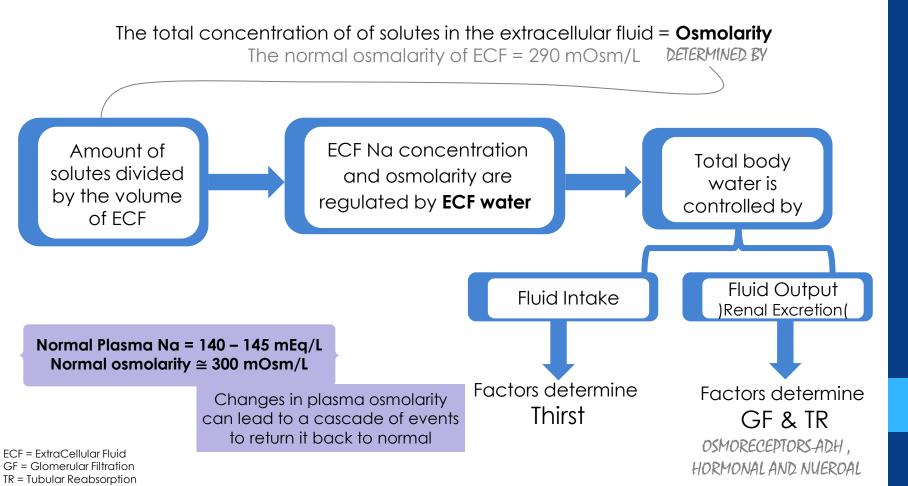
.8Renal Regulation of Body Fluid

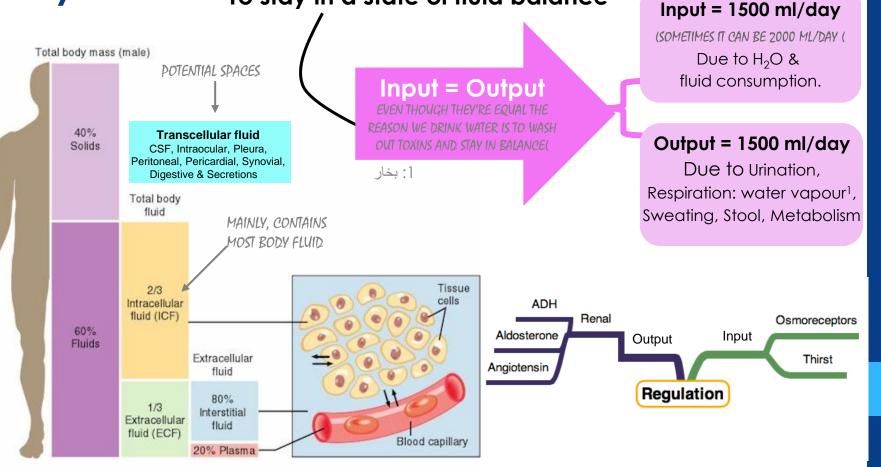
Color index

- Important - Extra Information

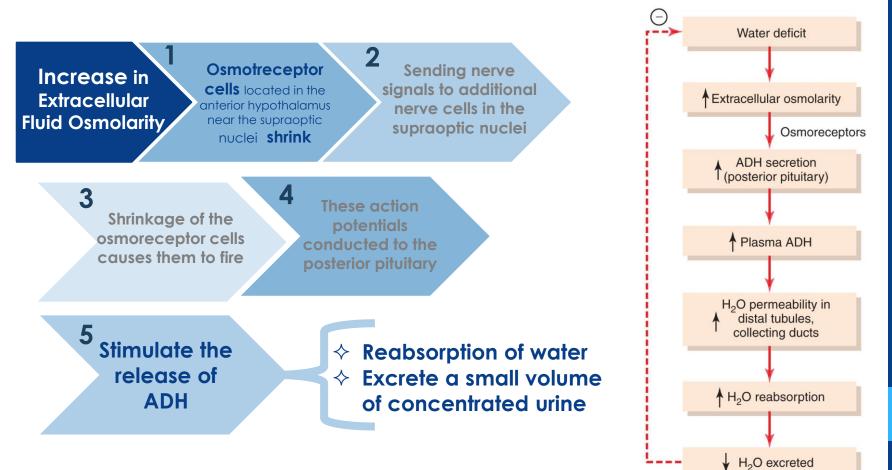
Contents

\diamond	Body Fluids	4
\diamond	Osmoreceptor-ADH Feedback	5
\diamond	Antidiuretic Hormone (ADH)	6
\diamond	Osmotic VS Non-Osmotic Stimuli	7
\diamond	Thirst Mechanism	8
\diamond	Thirst Stimuli	
\diamond	Role of Ang II & Aldosterone	10
\diamond	Regulation of Body Volume	11
\diamond	Water Deprivation VS Water Drinking	14
\diamond	Summary	
\diamond	MCQs	17
\diamond	SAQs	18
	-	


Recommended Videos!


Please check out this link before viewing the file to know if there are any additions/changes or corrections. The same link will be used for all of our work <u>Physiology Edit</u>

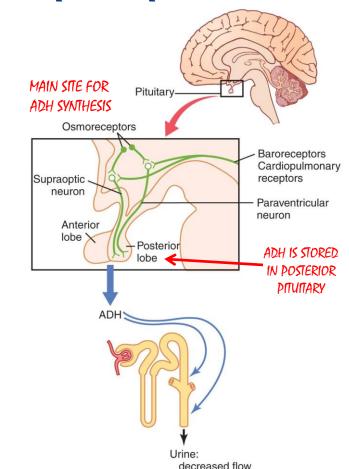
To function properly, **cells must be bathed in extracellular fluid with relatively CONSTANT concentration of electrolytes and other solutes**.



BUT FIRST LET US RECALL THE NORMAL DISTRIBUTION OF OUR BODY FLUIDS

Body Fluids - To stay in a state of fluid balance

Osmoreceptor-ADH Feedback



Antidiuretic Hormone (ADH(

Factors influencing its release:

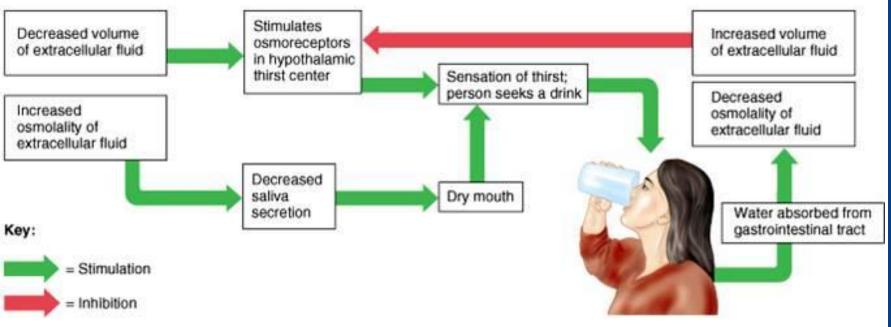
Main physiological factors

- ♦ Osmolality
- ♦ Haemodynamic factors
- \diamond Nausea \rightarrow stimulates
- \diamond Atrial natriuretic peptide (ANP) \rightarrow inhibits
- ♦ Angiotensin II \rightarrow stimulates

and concentrated

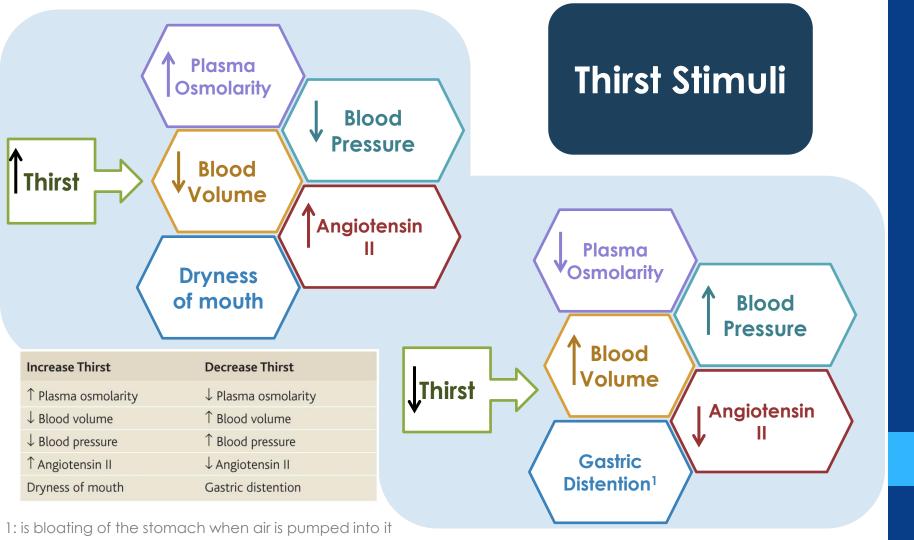
Osmolality Osmoreceptors in hypothalamus, outside

hypomalamos, ourside blood-brain barrier.
 ↑osmolality ⇒ ADH release
 "set point " 285 – 280 ~mOsm/kg H2O


Blood volume

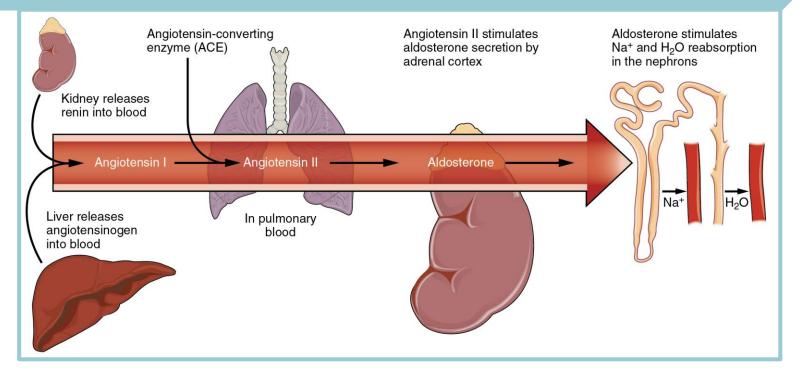
↓blood volume ⇒ ADH release less sensitive than osmolality need 5 – 10% ↓ blood volume As would be expected changes in blood volume affect osmolality ↓volume/BP ⇒ ↓ set point

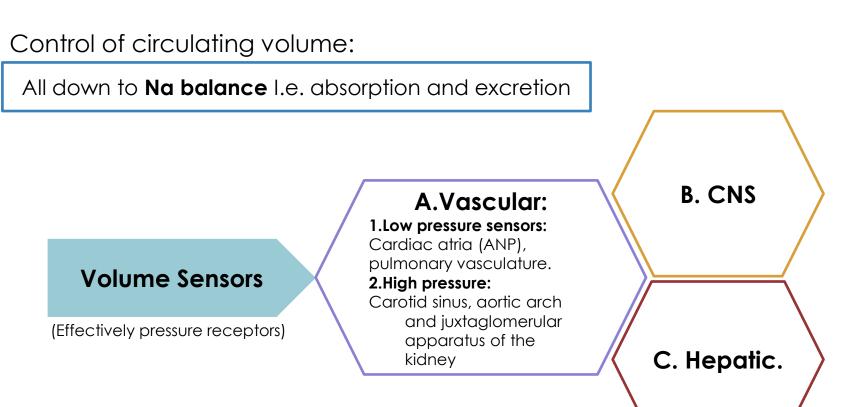
Osmotic VS Non-Osmotic Stimuli


Stimuli	Effect on ADH secretion	
Osmotic stimuli	↑ or ↓ depending on the change od omolarity (RAPID RESPONSE)	
Changes in serum osmolarity		
Non-Osmotic Stimuli		
Hemodynamic changes associated with low effective arterial blood volume	↑	
Drinking especially drinking cooler fluids	\checkmark	
Nausea	^	
Hypoglycemia	↑	
Renin angiotensin system (Ang II(↑	
Hypoxia and hypercapnia	^	
Arterial Baroreceptors reflex		
Chemoreceptors reflex		

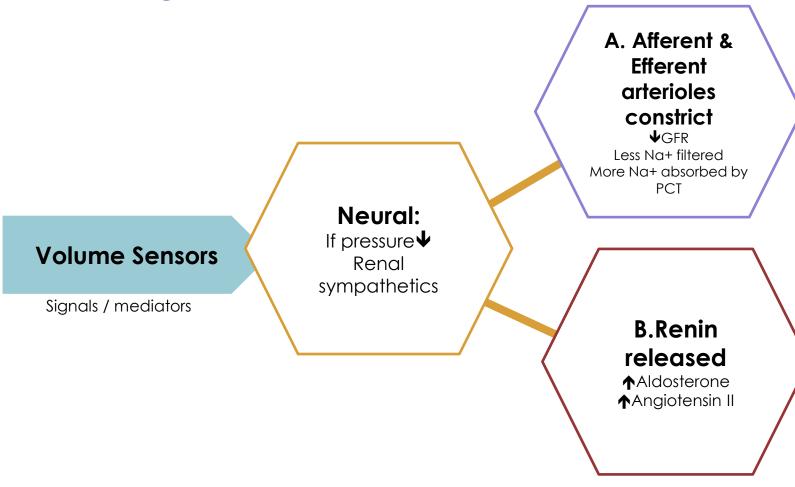
Thirst Mechanism

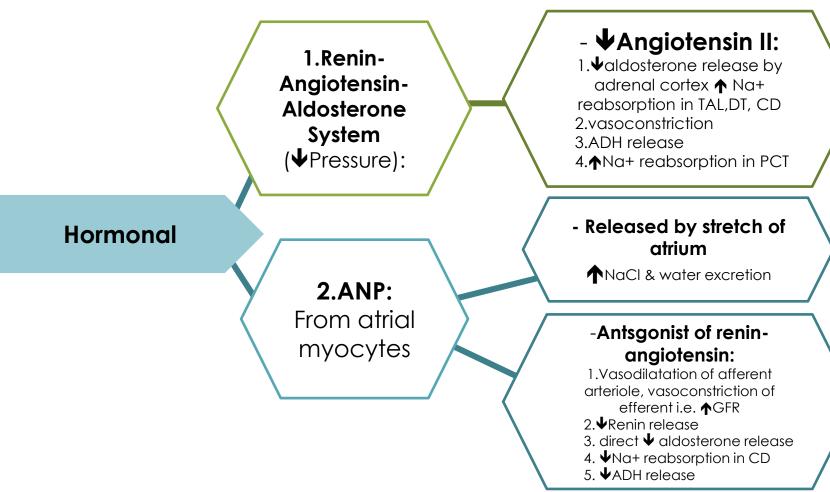
To stay in balance water intake = water loss Fluid intake is regulated by thirst mechanism


The desire to thirst is completely satisfied when: Plasma, osmolarity, Blood volume, Or both return to normal


Role of Ang II & Aldosterone

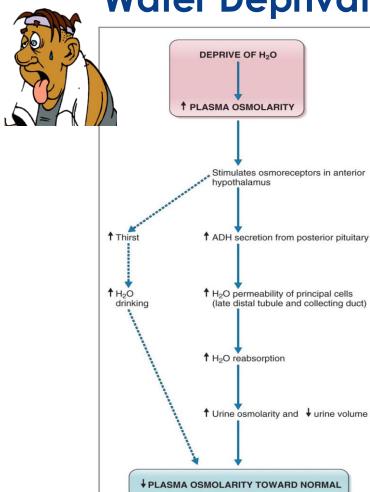
♦ They do not normally play a major role in controlling ECF osmolarity and Na+ concentration.

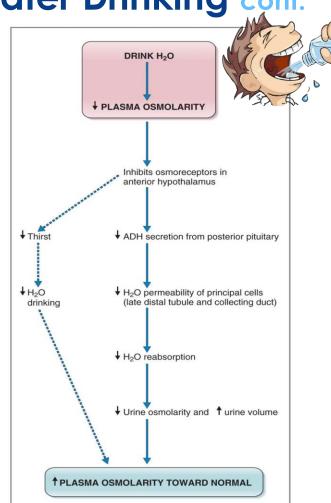

Their major role is to absorb sodium through distal convoluted tubules, leading to greater extracellular fluid volume and sodium quantity.


Regulation of Body Volume

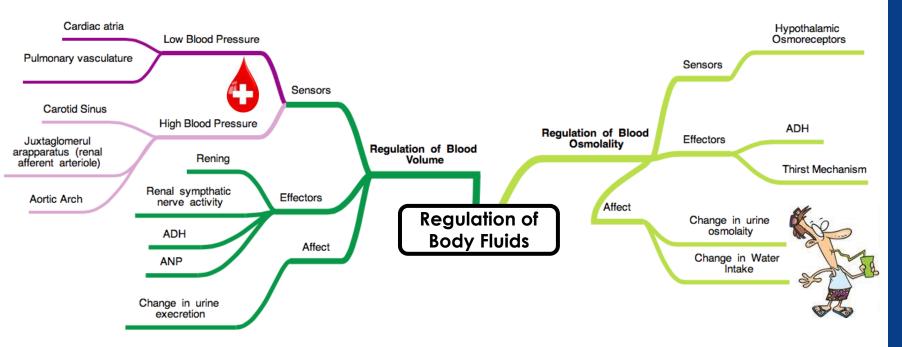
Regulation of Body Volume cont.

Regulation of Body Volume cont.




THE REGULATION OF BODY FLUID OSMOLARITY IS BEST ILLUSTRATED BY TWO COMMONPLACE EXAMPLES

Water Deprivation VS Water Drinking


Person lost in desert, Exposed to hot weather, Excessive diarrheaetc	DrinkS 2 liters of fluids	,0
 Water is lost from the body. Plasma osmolarity increases. Stimulates osmorecepters in the anterior hypothalamus. 	 The added water will dilute body fluid. Plasma osmolarity decreases. Inhibits osmorecepters in the anterior hypothalamus. 	
4) (+)ADH 4) (+)Thirst	4) (-)ADH	4) (-)Thirst
 A) Posterior pituitary gland secretes ADH which circulate in blood to the kidneys. B) ↑ water permeability of the principles cells of LDCT & CD. C) ↑ water reabsorption means more water is return to the body fluids. D) Urine osmolarity increases & Urine volume decreases. 	 A) Inhibition of posterior pituitary gland from secreting ADH, Levels of circulating ADH will decrease B) Less ADH is going to the kidney	A) Suppress water drinking behavior
Plasma osmolarity r	eturn back to normal	

Water Deprivation vs Water Drinking cont.

Additional

REGUULATION OI	ADH SECRETION	CONTROL OF THIRST	
INCREASE ADH	decrease ADH	increase THIRST	decrease THIRST
▲ Blood Volume	 Plasma osmolarity Blood Volume BD 	 Isod Volume BP 	 ✓ Plasma Osmolarity ↑ Blood Volume ↑ BP ✓ Angiotensin II

-10smolsrity of human body fluid equal:

- A. 290 mOsm/L
- B. 150 mOsm/L
- C. 145 mOsm/L
- D. 2500 mOsm/L

-2Decreased volume of extracellular fluid lead to:

- A. Dilation of the renal arteries
- B. Stimulation of osmoreceptors
- C. Increase saliva secreation
- D. Incease blood volume

-3Which one of the following doesn't lead to increase the thirst feeling:

- A. Decreased ECF volume.
- B. Decreased blood pressure.
- C. Angiotensin II..
- D. Gastric distention decreases thirst.

-4Which one of the following doesn't occur as a result of secreation of the ADH?

- A. Increase blood volume
- B. Increase arterial pressure
- C. Decrease ECF osmolarity
- D. Decrease fluid reabsorption

-5Which on of the following represent (the main place of ADH synthesis ,the place that stored in?(

A.Hypothalamic neurons in the supraoptic nuclei , posterior lobe of pituitary

B. Posterior lobe of pituitary , hypothalamic neurons in the suraoptic nuclei

C. Anterior lobe of pituitary , hypothalamic neurons in the suraoptic nuclei

D. Both of them in the anterior lobe of pituitary

-6 Which one of the following lead to decrease stimulation of the ADH?

- A. Arterial baroreceptor reflex
- B. Angiotensin II
- C. Chemoreceptor reflex
- D. Decrease ECF osmolarity

-7The mucosal lining the base of urinary bladder is..

- A. Loosly attached and folded
- B. There is no attachment in the base of the bladder
- C. Smooth and frimly attached
- D. Its not smooth and frimly attached

-1Mention two hormones that take a place in regulation of fluid output? ADH., Angiotensin/Aldosterone.

-2How can the gastrointestinal tract take place in thirst mechanism?

By absorption the water that inter the body from the mouth in responses to the thirst mechanism

-3Mention the two things that Osmolality OF THE EXTRACELLULAR FLUID is determined by? NaCl and water

-4Two ways of execrate fluid outside the body?

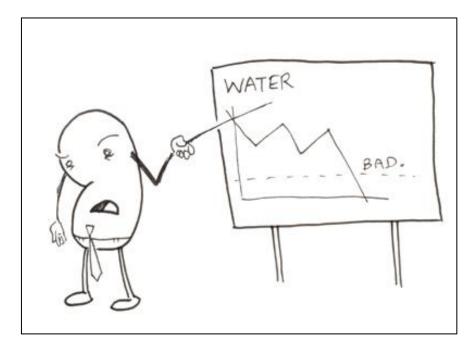
No regulation of the fluid input and it's a fatal mechanism

-5Mention two situations that lead to increase stimulates of the thirst center?

Increased osmolarity ECF, .Decreased ECF volume, .Decreased blood pressure., Angiotensin II. ,Dryness of the mouth.

-6What are the two things that should to return to the normal state to stop the thirst desire? Plasma osmolarity, Blood volume

-7What is the result on the ADH secretion when the osmolarity of the ECF decreased? Decrease the secreation of the ADH


-8Mention two mechanim that occar to regulate your body fluid when you're fasting?

Decrease saliva secretion G feel of thirst G increase H2O intake G stimulate osmoreceptor in the hypothalamic thirst center G increase Secreation of the ADH G increase H₂O absorption

THANK YOU FOR CHECKING OUR WORK! BEST OF LUCK

Done By:

- ♦ Malak Alkhathlan
- ♦ Mashael Hussain
- ♦ Amal Alaseeri
- ♦ Najilaa2020
- ♦ Najla Aldraiweesh
- ♦ Nouf Almasoud

