

9&10.Basics of Acid Base & Buffer Systems

Color index

- Important

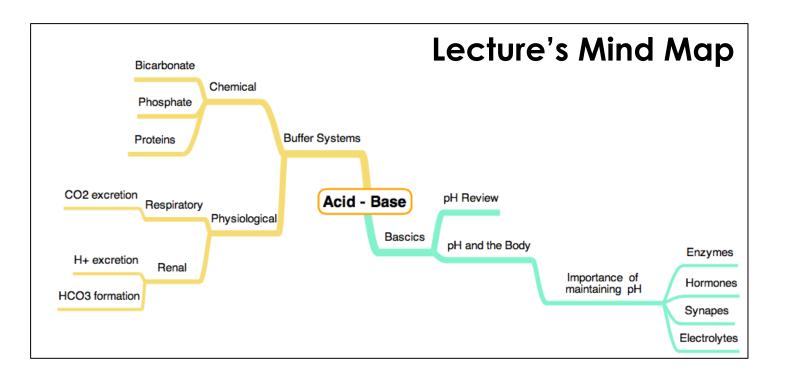
- Extra Information

- CLASS NOTES

Contents

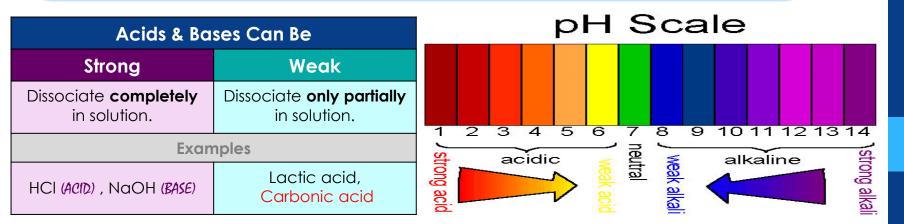
\diamond	Introduction	3`
\diamond	pH Review	4
\diamond	The Body & pH	5
\diamond	Buffer Systems	7
0	Chemical Buffer Systems	
0	Physiological Buffer Systems:	
•	Respiratory Mechanism	10
•	Renal Mechanism	13
\diamond	Summary	18
\diamond	MCQs	22
\diamond	SAQs	23

Recommended Video!



Not much related but it gives a great concept on buffers

Please check out this link before viewing the file to know if there are any additions/changes or corrections. The same link will be used for all of our work <u>Physiology Edit</u>


Introduction

Acid-base balance in concerned with maintaining a **normal hydrogen ion concentration in body fluids**. This balance is achieved by utilization of **buffers** in extracellular fluid, by respiratory mechanisms that excrete carbon dioxide, and by renal mechanisms that reabsorb bicarbonate and secrete hydrogen ions

pH Review

- ♦ pH = log [H⁺]
- ♦ H^+ is really a proton
- Ange is from 0 14 THIS IS THE RANGE اللي على وجه الأرض NOT IN OUR BODIES!
- ♦ If [H⁺] is <u>high</u>, the solution is <u>acidic</u> pH < 7
- ♦ If [H⁺] is <u>low</u>, the solution is basic or <u>alkaline pH > 7</u>
- ♦ Acids are H⁺ donors.
- ♦ Bases are H⁺ acceptors, or give up OH⁻ in solution

What does pH means?

pH (always written little p, big H) of a substance is an indication of how many hydrogen ions it forms in a certain volume of water. There's no absolute agreement on what "pH" actually stands for, but most people define it as something like "power of hydrogen" or "potential of hydrogen."

The Body & pH

- ♦ Homeostasis of pH is tightly controlled
- ♦ Extracellular fluid pH= 7.4
- ♦ Arterial Blood pH= 7.35 7.45 (OUR NORMAL RANGE)
- ♦ Venous blood is more acidic than arterial?

Because it contains more CO2 than arterial blood.

- < 6.8 or > 8.0 death occurs
- Acidosis : below 7.35
- Alkalosis : above 7.45

1: Enzymes are proteins. Each enzyme have a specific proteins structure to function → The free H+ have the capability to bind to the proteins of an enzyme and changes their configuration therefore denaturing them.

2: The synapses (nerves junctions) of the nerves is dependent on the pH so it may increase or decrease the transmission of signals between nerves if it was in under acidic affect the transmission will decrease and the person may get into coma.

Why is it important to maintain pH of blood within normal range?

- Most enzymes function only with narrow pH ranges¹
- Acid-base balance can affect electrolytes (Na⁺, K⁺, Cl, Ca++⁻)
- pH affect hormones.
- To maintain normal function of synapses²

The Body & pH cont.

The Body Produces More Acids Than Bases

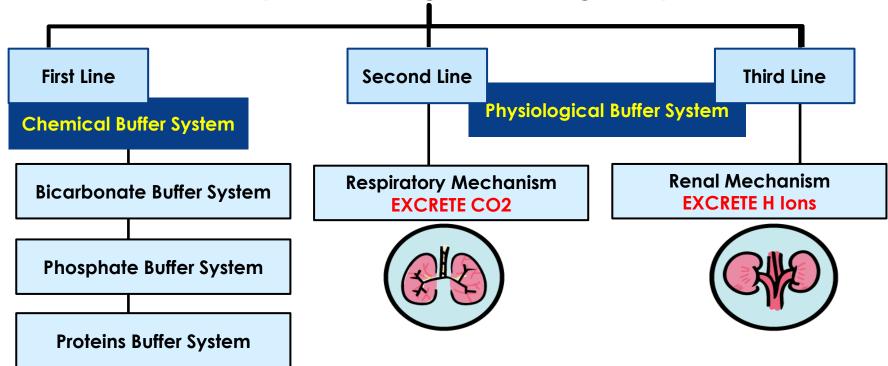
Sources of acids threats:

- 1. Acids taken in with food. FOOD CONTAINING FATS SO THIS IS FATTY ACIDS, PROTEINS DIET WHICH IS AMINO ACIDS
- 1. Acids produced by metabolism of lipids and proteins

THE METABOLISM OF THEM CAUSES ACIDS TO BE PRODUCED BUT THAT DOESNT MEAN THAT THEY ARE STRONG ACIDS. AMINO ACIDS BEHAVE AS ACIDS WHEN IN AN ACIDIC SOLUTION AND VISE VERSA...

3. Cellular metabolism produces CO₂.

 CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-


KEY:

 CO_2 = Carbon Dioxide H_2O = Water H_2CO_3 = Carbonic Acid H^+ = Hydrogen ion HCO_3^- = Bicarbonate CARBONIC ACID COULD DISSOCIATE TO EITHER WATER AND CARBON DIOXIDE OR BICARBONATE AND HYDROGEN

Buffer Systems

- THE BODY DEFENSE HAS A LIMIT BECAUSE IF IT WAS PERFECT THEN THERE WON'T BE DISEASES!
- THE BUFFER SYSTEM BUFFERS THE CHANGE THAT OCCURS IN THE MEDIUM

Body Defence Against Changes in pH

Chemical Buffer Systems

	Bicarbonate Buffer	Phosphate Buffer	Proteins Buffer
Location	It is the most abundant and acts both extracellular and intracellular.	Major intracellular buffer as its concentration is high intracellularly and tubular fluid	Abundant buffers especially intracellular
The Main Elements	 Sodium Bicarbonate (NaHCO₃) weak (acid carbonic acid (H₂CO₃). CARBONIC ACID IS ALSO CALLED CARBON DIOXIDE 	•H ₂ PO ₄ - (acid) •HPO ₄ ² - (base)	 Hemoglobin, work in RBC Plasma proteins. Intracellular proteins.
Notes	 The two elements are regulated as: CO₂ by the lungs, HCO3- by the kidney. Hts concentration in blood attach and is called Alkali Reserve. Kaintain a 20:1 ratio : HCO₃- : H₂CO₃ BECAUSE THE BODY PRODUCES A LOT OF ACIDS SO I NEED TO GIVE A LOT OF BASE IN ORDER TO MAINTAIN A BALANCE 	 ♦ It is an important buffer in renal tubules. why? o Becomes concentrated in the tubular fluid, so become powerful. 2. its pKa = 6.8, which close to the pH in the tubular fluid of the distal nephron. 	

Chemical Buffer Systems cont.

♦ Bicarbonate Buffer:

•We must have acid and base to react with each others:

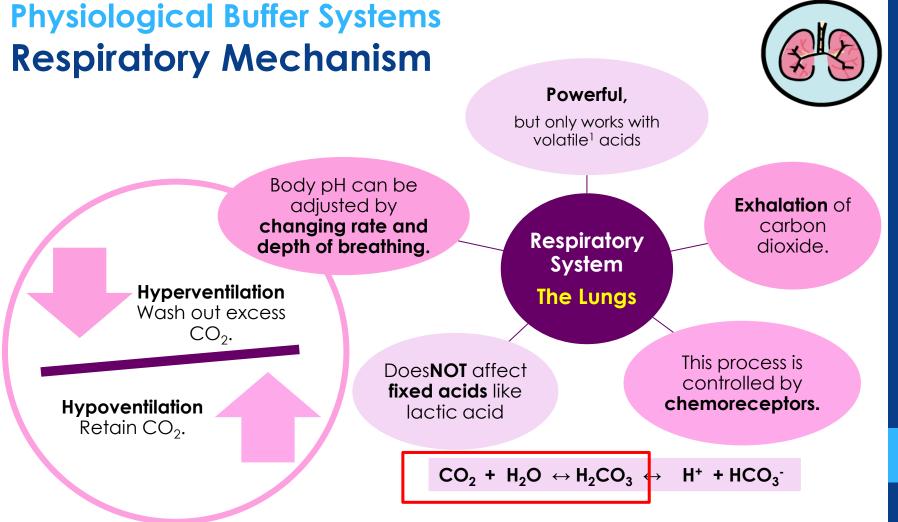
HCI (strong acid) + NaHCO₃ \leftrightarrow **H**₂**CO**₃(weak acid) + NaCI

NaOH (strong base) + $H_2CO_3 \leftrightarrow NaHCO_3$ (weak base) + H_2O

Phosphate Buffer:

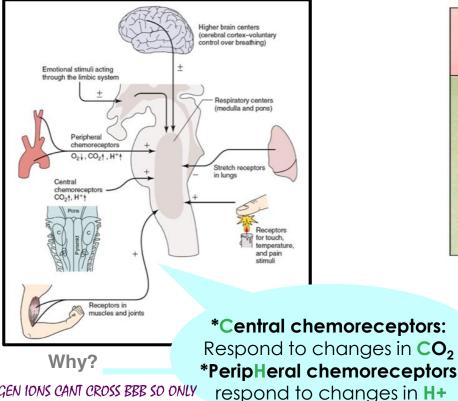
 $H+ + HPO_4^2$ - (base) $\leftrightarrow H_2PO_4$ - (Monohydrogenphosphate = BASE "hydrogen acceptor")

OH- + $H_2PO_4^-$ (acid) $\leftrightarrow H_2O + HPO_4^2-$ (**Di**hydrogenphosphate = **ACID** "Donner")


♦ Protein Buffer:

For example: hemoglobin in RBC

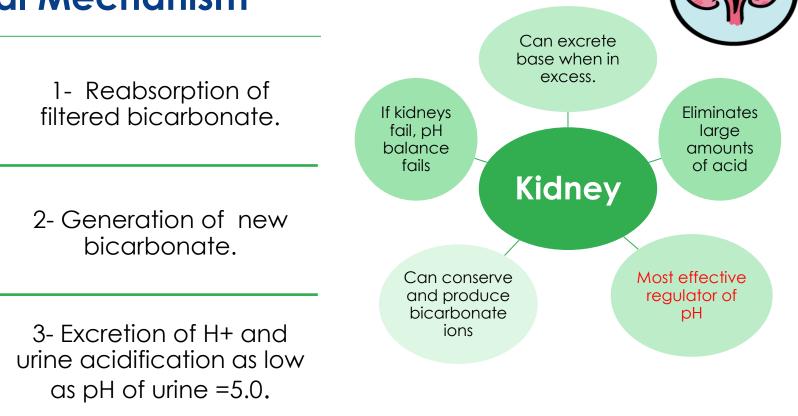
Carboxyl group gives H+ (decrease PH) , Amino group accept H+ (increase PH)


THE EQUATIONS ARE NOT FOR MEMORIZING!

The main goal of chemical buffer systems is to convert strong acids and bases into weak acids and bases to maintain blood pH

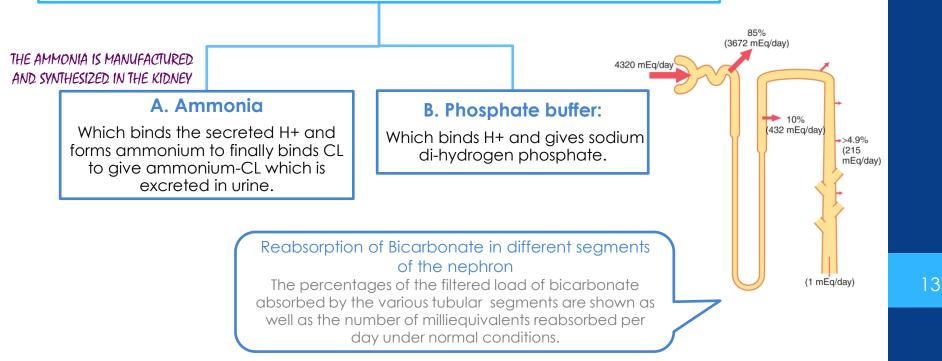
1: (of a substance) easily evaporated at normal temperatures.

Respiratory Mechanism



HYDROGEN IONS CANT CROSS BBB SO ONLY THE PERIPHERAL CHEMORECEPTORS WILL SENSE THEIR CHANGES Circulation H₂O + ↑CO₂ Carbonic anhydrase Lungs Respiratory center in brain stem ↑PH ★ Kidney ↓pH ↓pH ↑ TRespiration rate and depth ↑CO₂ given off

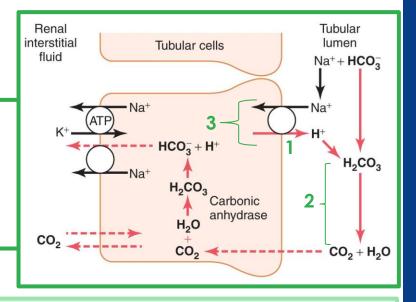
> The carbonic acid in the RBC is gonna give the CO_2 and water to the lungs, and from the other side the carbonic acid will give H and HCO_3 to the kidney so it will excrete the hydrogen in the urine and reabsorbed the HCO_3 .


Physiological Buffer Systems Renal Mechanism

5Hq boold regulates the kidney How

Physiological Buffer Systems Renal Mechanism cont.

For the kidney to continue excretion of acidic urine, the excreted H+ has to be buffered by two buffer systems in the renal tubules:


in Proximal Convoluted Tubules, Thick Ascending & Early Distal Tubules

Cellular mechanisms for

1 -Active secretion of hydrogen ions into the renal tubules

2 -Tubular reabsorption of bicarbonate by combination with Hydrogen ions to form carbonic acid , which dissociates to form $CO_2 + H_2O$

3- Na ion reabsorption in exchange for the hydrogen ions secreted.

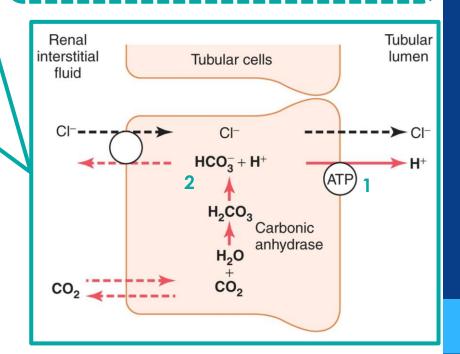
- \circ For each secreted H+ one molecule of HCO₃- is reabsorbed back to the blood.
- Energy for H+ transport against concentration gradient, is derived from Na+ gradient developed by Na-K pump.
- >90% of bicarbonate reabsorbed in this way
- The reabsorption of HCO_{3^-} in this segment does not lead to net secretion of H+ because the secreted H+ binds with the filtered HCO_{3^-}
- The secreted H+ in this segment does not lead to a significant drop in tubular pH.
 - The transport of HCO_3 at the basolateral membrane is facilitated by: 1. Na-HCO₃- cotransport. 2. Cl- HCO_3 - exchange

Generation of New HCO₃- and Secretion of H+ :

Intercalated cells of distal & Collecting tubules

- This rids the body of 80 mEq of H+ per day which comes from the metabolism.
- Most of this H+ is secreted in combination with urinary buffers; phosphate & ammonia.

 H+ is secreted by primary active transport (H+ ATPase). The energy required comes from the breakdown of ATP at the luminal border.


 This secretion can decrease pH of tubular fluid to 4.5, which is the lowest pH achieved in normal kidney. It is responsible for urine acidity.

2. For each H+ molecule secreted in this segment one HCO_3 - molecule is formed and reabsorbed.

THIS IS THE SYNTHESIS OF BICARBONATE

Where the actual H+ Secretion Occur

Primary Active H+ secretion (H+ATPase) by the distal tubule & collecting tubules

Generation of New HCO₃- and Secretion of H+ : H+ Buffering By Ammonia & Phosphate

\circ When H+ is secreted in excess of HCO_{3⁻},

only small part of H+ can be excreted in the ionic form (H+)in urine. • The lower limit of tubular fluid pH that allows H+ secretion is 4.5. OTHERWISE THE TUBULES WILL ALL BE BURNED

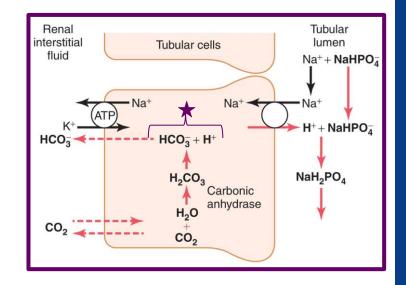
• To continue secretion of H+, the excess H+ has to be buffered (phosphate & ammonia).

At the same time new molecules of HCO_3 - will be formed and pass into the blood.

SO, when there is excess H+ in the extracellular fluid, the kidney:
1. Absorb all filtered HCO₃2. Secrete excess H+
3. Generate new HCO₃-

Renal Mechanism cont. Phosphate Buffer

Phosphate works well in tubular fluid for many reasons:

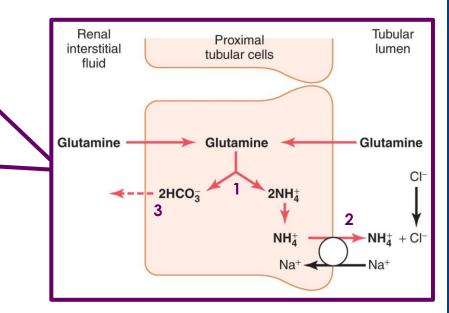

1. Concentrated in tubular fluid due to H_2O and low permeability to phosphate.

2. pH of tubular fluid close to pKa of phosphate.

★HCO₃- formed by this mechanism represent a net gain not replacement of filtered molecule.

Buffering of H+ by phosphate. Secretion of H+ results in de-novo¹ formation of one molecule of HCO-3

THIS HAPPENS IN THE PROXIMAL TUBULES CUASE I HAVE MORE PHOSPHATE THERE.


Formation & Secretion of Ammonium (NH₄+)

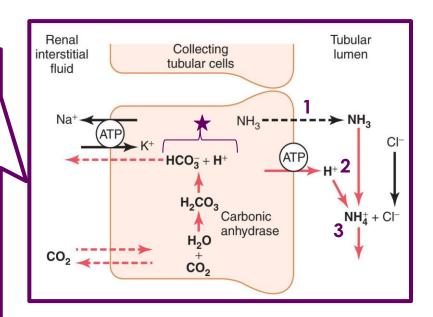
 Glutamine is present in the tubular cells and it gets metabolized into 2 bicarbonate and 2NH₃ and those 2NH₃ will bind to hydrogen and form NH₄

2. NH₄ will be secreted to bind with chloride and be excreted later on in urine.

3. The new 2 bicarbonate that has been formed will go back to blood.

THIS HAPPENS IN THE PROXIMAL TUBULES

Buffering of H+ Secretion By Ammonia (NH₃)

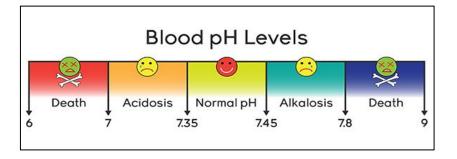

Here ammonia will catch the H+ outside the cell.

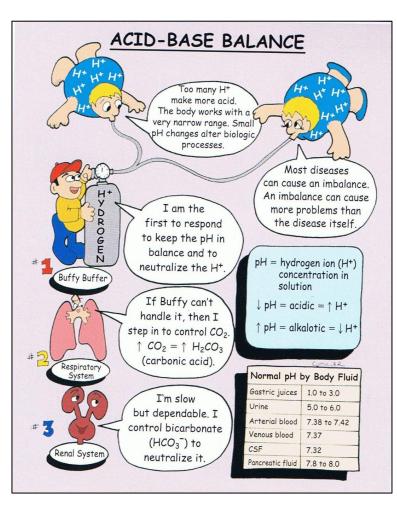
1.NH₃ freely diffuses into the lumen from cells

- **2.** Associate with H+ that has been secreted in the lumen to form NH_4 +
 - **3.** Which is trapped in the lumen and excreted.

★Again, the loss of a H⁺ from the cell creates de-novo synthesis of a HCO₃⁻ molecule to be reabsorbed.

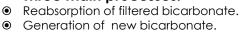
THIS HAPPENS IN COLLECTING TUBULES




Ammonia = NH_3 Ammonium NH_4 +

20

ACID BASE MNEMONIC ROME) Respiratory R Opposite. pH T PCO2 & Alkalosis pH 1 PCO2 1 Acidosis Metabolic М Equal E pH T HCOs T Alkalosis pH | HCO3 | Acidosis

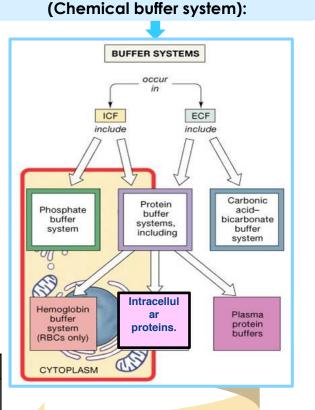


Second& Third line of defense against PH shift (Physiological buffers):

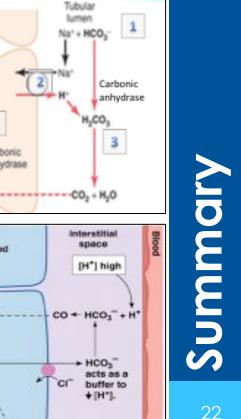
Respiratory mechanism: (Co2 excretion)

Renal mechanism: (H+ excretion)

- Three main processes: - Powerful, but only works with ۲ volatile $acids(CO_2)$
- Doesn't affect fixed acids like lactic acid
- -Body pH can be adjusted by changing rate and depth of breathing.



Excretion of H+ and urine acidification. ۲


- For the kidney to continue excretion of acidic urine, the excreted H+ has to be buffered by two buffer systems in the renal tubules:

Ammonia Phosphate buffer:

	-	
Bicarbonate Buffer:	Phosphate Buffer:	Protein Buffer:
 It acts both extracellular and intracellular. It is the most <u>abundant</u>. <u>Most</u> important extracellular buffer: the two components are regulated as: CO2 by the lungs, HCO3- by the kidney. 	Major intracellular buffer and important buffer in renal tubules .	Abundant buffers especially intracellular

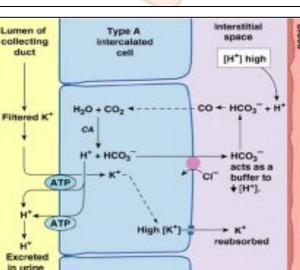
First line of defense against PH shift

-Secretion of H+ and Reabsorption of HCO₃-

Keep in mind that for each HCO3- reabsorption, a H+ must be secreted.

Occurs in all tubule Except: descending and ascending loop of Henle.

- The reabsorption of HCO3- in this segment of the nephron (PCT & diluting segment) does **not** lead to **net secretion** of H+ because the secreted H+ binds with the filtered HCO3-

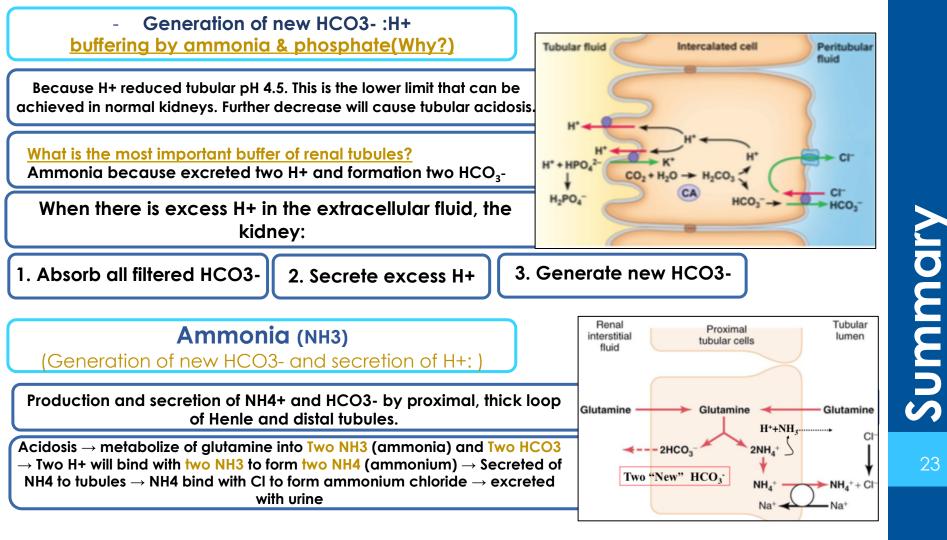

- Also the secreted H+ in this segment <u>does not lead to a significant</u> <u>drop in tubular pH.</u>

- Primary Active H+ secretion (H + ATPase)

For each H+ molecule secreted in this segment one HCO3molecule is formed and reabsorbed.

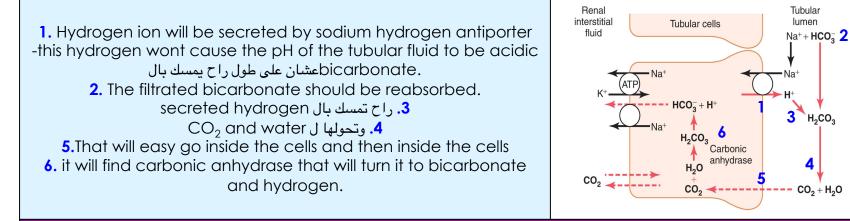
- Occurs in the intercalated cells of distal & collecting tubules.

- Most of this H+ is secreted <u>in combination with urinary buffers</u>; phosphate & ammonia
- This secretion can decrease pH of tubular fluid to 4.5, which is the <u>lowest pH achieved in normal kidney</u>. It is responsible for urine acidity.



Renal

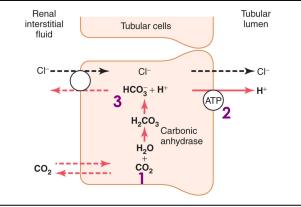
interstitial


fluid

Tubular cells

STORY TIME

Reabsorption of filtered HCO₃(In PCT, Thick ascending & Early DCT)



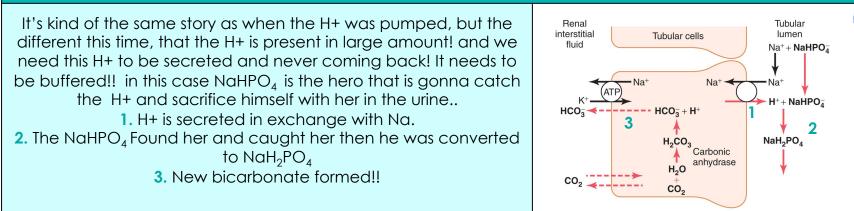
Primary Active H+ secretion (In interclated cells of distal tubule & collecting tubules)

1. CO_2 is present by cell metabolism, and this is used to secrete 1 new bicarbonate and 1 new hydrogen that is going to be secreted.

2. This secreted hydrogen here is responsible for acidification of bicarbonate وطلعت بقوة عشان ماراح يقابلها ,urine فمارضت تطلع إلا يوم عطيناها فلوس.. ATP

New bicarbonate formed!!

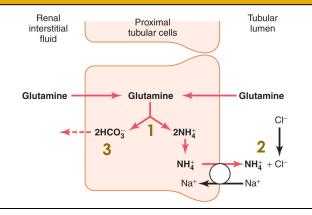
lumen


H₂CO₃

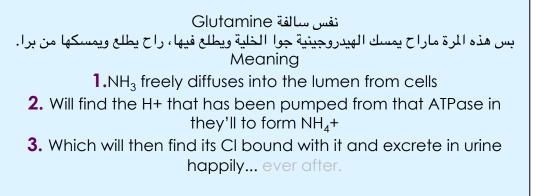
 $CO_{2} + H_{2}O$

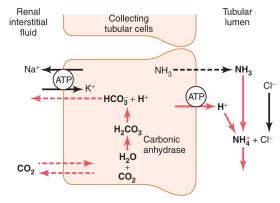
Summar

STORY TIME


Buffering of H+ Secretion By Filtered Phosphate (NaHPO₄)

Production and Secretion of Ammonium (NH₄) (in PCT)


القصة هنا، انو في Glutamine. 1.Once this Glutamine is metabolized to 2 bicarbonate and 2 NH₄ في الحقيقة NH₄ ماراح تطلع على طول راح يسبقها NH₃ وهي المسؤولة انها تمسك NH₄ الهيدروجينة وبعدين راح تصير NH₄ 2. This NH₄ will be secreted.. but it will find Cl in the lumen, They'll bind and be secreted in the urine together with the H+ happily!


3. Remember the 2 new bicarbonate that has been formed!

STORY TIME

Buffering of H+ Secretion By Ammonia (NH₃) (in Collecting Tubules)

THE END

HOPE THAT WAS HELPFUL!

I KNOW YOU WILL MISS OUR STORIES I KNOW WILL DO ...

1- Which one of the following is NOT a chemical buffer?

- A. Bicarbonate buffer system
- B. Respiratory mechanism
- C. Protein buffer system

2- The concentration of bicarbonate in blood is:

- A. 27 mEq/L
- B. 23 mEq/L
- C. 37 mEq/L

3- Major intracellular buffer is:

A.Bicarbonate

- B. Protein
- C. Phosphate

4- The lowest PH achieved in normal kidney is:

- A. 4.5
- B. 6.8
- C. 7.4

5- Which one of the following is the best buffer in the renal tubule and tubular fluid?

- A. Ammonia
- B. Phosphate
- C. Bicarbonate

6- The major source for production of ammonium within the proximal tubular cells is:

- A. Valine
- B. Glutamine
- C. Tyrosine

7- What is the correct sequence of events?

- A. Conversion of H_2CO_3 to CO_2 and H_2O
- B. Conversion of HCO_3 to H+ and CO_3
- C. Conversion of H_2O to CO_2 and H+
- D. None of the above

8- Which is the best indicator of H+ excreted in urine?

- A. Urine pH
- B. Filtered load of HPO₄
- C. Filtered load of NH₃
- D. Both A and B

9- Which condition has the highest excretion of NH₄?

- A. Diabetic ketoacidosis
- B. Chronic renal failure
- C. Vomiting
- D. None of the above

1- What are the buffer systems in the renal tubules that buffer the excreted H+?
*Ammonia *Phosphate

2- List the three things that the kidney will do when there is excess H+ in the extracellular fluid?
*Absorb all filtered HCO3*Secrete excess H+
*Generate new HCO3-

3- Why is it important to maintain pH of blood within normal range? Mention 2.

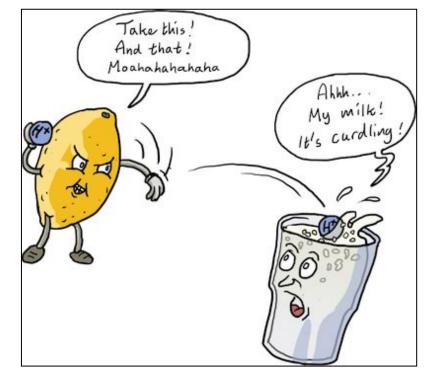
*Prevent denaturing of enzymes *Maintain normal function of synapses

4- Mention 2 of the sources that makes our body produce more acids? *Acids taken with foods (such as proteins)

*Cellular metabolism produces CO₂.

5- Why the phosphate buffer is important in renal tubules?

*Becomes concentrated in the tubular fluid, so become powerful *Its pKa = 6.8, which close to the pH in the tubular fluid of the distal nephron


6- How the kidney regulates blood pH?

By Reabsorption of filtered bicarbonate, Generation of new bicarbonate and Excretion of H+.

THANK YOU FOR CHECKING OUR WORK! BEST OF LUCK

Done By:

- ♦ Reem Alassaf
- ♦ Rana Alhumaymidi
- ♦ Rana Aljunadiel
- ♦ Rasha Bassas
- ♦ Hanouf Almuhanna
- ♦ Reem Labani
- ♦ Fetoon Alnemri
- ♦ Nouf Almasoud

