

OXIDATIVE DECARBOXYLATION AND KREBSCYCLE

"EITHER YOU RUN THE DAY, OR THE DAY RUNS YOU"

6

Oxidative Decarboxylation

By the end of this lecture, students are expected to:

- Recognize the various fates of pyruvate.
- Define the conversion of pyruvate to acetyl CoA.
- Discuss the major regulatory mechanisms for PDH complex.
- Recognize the clinical consequence of abnormal oxidative decarboxylation reactions.

Krebs Cycle

By the end of this lecture, students are expected to:

 \mathbf{C}

- Recognize the importance of Krebs cycle.
- Identify various reactions of Krebs cycle.
- Define the regulatory mechanisms of Krebs cycle.
- Assess the energy yield of PDH reaction and Krebs cycle's reactions.

iochemistry Team OXIDATIVE DECARBOXYLASE OF PYRUVATE

Ø

PDH REACTION : CLINICAL APPLICATION

✓ Deficiencies of thiamine or niacin serious CNS problems. WHY?:

Brain cells are unable to produce sufficient ATP if the PDH complex is inactive.

✓Wernicke-Korsakoff

(encephalopathy-psychosis syndrome) due to thiamine deficiency, may be seen especially with alcohol abuse

✓ congenital lactic acidosis.

PDH complex deficiency is the most common biochemical of it

OVERVIEW OF KREBS CYCLE

<u>1-what is Krebs cycle?</u>

- it is a part of the essential pathways of energy metabolism.

- It is the Final common pathway for oxidation

2- where does it occur?

It occurs Exclusively in mitochondria (it occurs only in the mitochondria. 'aerobic')

3-Major source for ATP

4-Krebs cycle has different names:

Citric acid cycle. Tricarboxylic acid cycle. (because the first product of the cycle "citrate" contains 3 carboxylic acid group)

5-Mainly catabolic with some anabolic features

Synthetic reactions (anabolic features): Glucose from amino acids Nonessential amino acids Fatty acids Heme

Recall:

Non essential amino acids are amino acids that are synthesized by our bodies

Step 5

Succinyl CoA

Succinate thiokinase

Succinate (4 Carbons)

*CoA is out *GDP + Pi turned into GTP

(because of the energy gained from the cleavage of CoA bond *high energy*)

*The only Substrate-Level Phosphorylation in krebs cycle

Step 8

Irreversible steps:

Step1 Step3 Step4

Why do we convert Succinyl CoA to Succinate to Fumarate to L- Malate to Oxaloacetate even though they all have the same number of carbons? Because we want to release more energy by : 1/Substrate level phosphorylation 2/ Oxidative phosphorylation

Produce iochemistry Tea^{#35} 2ATP 4ATP 2NADH use 2ATP 2NADH =NET **2ATP** preKREB 1 Glycolysis S Aerobic *pyruvate One from each one 2ATP oxydeation 4NADH Energy Yield 4 ATP 2GTP 2FADH, 10 NADH = 2ATP 2 FADH₂ NADH =3 ATP One FADH₂= 2 ATP from INADH each one from each pyruvate KREBS Net= 2NADH *citric acid cycle* 10 NADH X 3 = 30 ATP $2 \text{ FADH}_2 X 2 = 4 \text{ ATP}$ NET = 38 ATP6NADH 3 from each one **38 ATP** THE NO NET ATP PRODUCTION v.V 435 Biochemistry Team

Energy yield

2 Co₂ are released :

1- isocistrate → a-ketoyluterate.
 2- a-ketokinase → sccinyl CoA.

In Krebs cycle :

- 2 FADH₂ (one from each) : succinate \rightarrow fumarate .
- ◆ 2 GTP = 2 ATP (one from each) : succinyl coA → succinate .
- ♦ 6 NADH (three from each) :
- Isocitrate → a-ketogluterate .
- a-ketogluterate → succinyl coA .
- $\overline{3}$ L-malate \rightarrow oxaloacetate.

Regulation of Oxidative Decarboxylation and Krebs Cycle

PDH complex and the TCA cycle are both up-regulated in response to a decrease in the ratio of **ATP : ADP NADH : NAD+** 2 TCA cycle activators are: ADP , Ca2+ 3 TCA cycle inhibitors are: ATP, NADH

SUMMARY

step	reactant	product	enzyme	CO ₂	ATP	NADH	FADH ₂
Glycolysis (cytosol)	D-glucose	Glucose 6-phosphate	Hexokinase (all tissues) or Glucokinase (liver)	_	-1	-	_
	Glucose 6-phosphate	Fructose 6-phosphate	Phosphoglucos isomerase	_	_	_	_
	Fructose 6-phosphate	Fructose 1,6-bisphosphate	Phosphofructokinase-1 (PFK-1)	_	-1	_	_
	* Fructose 1,6-bisphosphate * Dihydroxyacetone phosphate	*(glyceraldehyde 3- phosphate+Dihydroxyacetone phosphate) *(glyceraldehyde 3-phosphate)	* Aldolase A * Triose phosphate isomerase	_	_	-	-
	2 (glyceraldehyde 3-phosphate)	2 (1,3-bisphosphoglycerate)	glyceraldehyde 3-phosphate dehydrogenase	-	-	2(I)= <mark>2</mark>	_
	2 (1,3-bisphosphoglycerate)	2 (3-phosphoglycerate)	Phosphoglycerate kinase	_	2(I)= <mark>2</mark>	_	_
	2 (3-phosphoglycerate)	2 (2-phosphoglycerate)	Phosphoglycerate mutase	_	_	-	_
	2 (2-phosphoglycerate)	2 (2-phosphoenolpyruvate)	Enolase	_	_	_	_
	2 (2-phosphoenolpyruvate)	2 (pyruvate)	Pyruvate kinase (PK)	_	2(I)= <mark>2</mark>	_	_
Oxidative decarboxylation (mitochondria)	2 (pyruvate)	2 (acetyl CoA)	Pyruvate dehydrogenase complex (PDH)	2(I)= 2	-	2(I)= <mark>2</mark>	_
Krebs cycle [TCA cycle] (mitochondria)	2 (acetyl CoA) + 2 H ₂ O + 2 (Oxaloacetate)	2 (citrate)	Citrate synthase	_	_	-	_
	2 (citrate)	2 (isocitrate)	Aconitase	_	_	_	_
	2 (isocitrate)	2 (α- ketoglutarate)	lsocitrate dehydrogenase	2(I)= 2	_	2(I)= <mark>2</mark>	_
	2 (α- ketoglutarate)	2 (succinyl CoA)	αKG dehydrogenase	2(I)= 2	_	2(I)= <mark>2</mark>	_
	2 (succinyl CoA)	2 (Succinate)	Succinate thiokinase	_	2(I)= <mark>2</mark>	_	_
	2 (Succinate)	2 (fumarate)	Succinatedehydrogenase	_	_	_	2(I)= <mark>2</mark>
	2 (fumarate)	2 (malate)	fumerase	_	_	_	_
	2(malate)	2 (oxaloacetate)	Malate dehydrogenase	_	_	2(1)= 2	_

• NADH = 3 ATP

*FADH₂ = 2 ATP *GTP = ATP • net ATP production by complete glucose oxidation:

Aerobic glycolysis	<u>* ATP consumed:</u> Hexokinase (all tissues) or Glucokinase (liver)I Phosphofructokinase-I (PFK-I)I	-2				
	 <u>*ATP produced:</u> Substrate-level (ATP) Phosphoglycerate kinase2(1)= 2 	+lo				
	 Pyruvate kinase (PK)					
Oxidative decarboxylation	Pyruvate dehydrogenase complex 2(NADH)2(3)= 6	+6				
Krebs cycle	* <u>Substrate-level (GTP)</u> Succionate thiokinase2(1)= 2	+2				
	* <u>Oxidative-level</u> - NADH=3ATP Isocitrate dehydrogenase	+22				
NFT						

Krebs / citric acid cycle

MCQS:

I-Krebs cycle occurs in:

a-Cytosol b-Mitochondria c-Both of them

2-The Irreversible steps from these:

a- L-Malate →Oxaloacetate b- αKetoglutarate →Succinyl CoA c-fumarate → L-malate

3-Isocitrate dehydrogenase is activated by:

a- Ca+2 b- ATP c- NADH

4-The net ATP produced by glycolysis : a. 10 ATP b. 2 ATP c. 8 ATP

MCQS:

5-Each FADH2 produce : a. 3 ATP b. 2 ATP c. 4 ATP 6-The net ATP produced by CITRIC ACIDE CYCLE : a. 38 ATP b. 24 ATP c. 18 ATP 7-The net ATP produced by pyruvate oxidation : b. 2 ATP c. 6 ATP a. 0 ATP 8-..... CO2 are released in oxidation of pyruvate : c. two a. Non b. one 9-TCA cycle activators are: a. ADP, Ca2+ b. ATP, NADH c. FADH2, ADP 10-Each Acetyl coA in the Citric Acid cycle produced : a. 6 NADH b. 3 NADH c. 8 NADH

Girls Team:

<u> شهد العنزي.</u> - نوره الرميح . <u>- جواهر الحربي.</u> - منيره الحسن <u> - ساره العنزي.</u> - دلال الحزيمي. <u>- نوره القحطاني.</u> - بدور جليدان. _ علا النهبر. - أفنان المالكي. _ فاطمه الدين. - جو هره المالكي. - خوله العريني. - لجين السواط - منيال باوزير. - رزان السبتى . - ر هف العباد - وضحى العتيبي. - ساره الحسين

Boys Team:

- عبد الله الشنيفي.

* نستقبل إقتر احاتكم وملاحظاتكم على:

@435biochemteam

@biochemteam435