

GLUCOSE METABOLISM: GLUCONEOGENESIS

- Very important
- Extra explanation

"HOPE IS BEING ABLE TO SEE THAT THERE IS LIGHT DESPITE ALL OF THE DARKNESS."

435 Biochemistry Team

8

- The importance of gluconeogenesis as an important pathway for glucose production
- The main reactions of gluconeogenesis
- The rate-limiting enzymes of gluconeogenesis
 Gluconeogensis is an energy-consuming, anabolic pathway

OVERVIEW OF GLUCONEOGENESIS

• Gluconeogenesis is an energy-consuming, anabolic pathway

Gluconeogenesis is important to provide the body with glucose when there is no external source of glucose (during prolonged fasting or starvation)

• Occurs in Liver mainly, and in Kidney

During Overnight fast:

- 90% of gluconeogenesis occurs in liver
- 10% of gluconeogenesis occurs in Kidneys
- Gluconeogenesis occurs in both mitochondria & cytosol.

EXCEPTION! if gluconeogenesis starts by **Glycerol**, it will need only the **cytosol**

GLUCONEOGENIC PATHWAY

- Seven glycolytic reactions are reversible & are used in gluconeogenesis from lactate or pyruvate.
- Three glycolytic reactions are irreversible & must be reversed (by 4 alternate reactions) in gluconeogenesis.

GLUCONEOGENESIS

The 4 alternate reactions in gluconeogenesis to the 3 irreversible glycolytic steps:

Glycolysis enzymes	Gluconeogenesis enzymes
Pyruvate kinase	1) Pyruvate carboxylase
	2) PEP-CK
PFK-1	3) Fructose 1,6 bisphosphatase
Glucokinase	4) Glucose 6-phosphatase

*PEP-CK= Phosphoenolpyruvate CarboxyKinase

Pyruvate carboxylase + PEP-CK ≠ Pyruvate kinase

REGULATION OF PYRUVATE CARBOXYLASE

 Acetyl CoA diverts pyruvate away from oxidation and toward gluconeogenesis

phosphatase

D-Glucose

- This enzyme inhabited by AMP & Fructose 2,6- bisphosphate
- induced by ATP

H-C-OH

Н

D-Glucose

H-C-O-P

н

Glucose 6phosphate Glucose 6-

phosphatase

Fructose 1,6- bisphosphatase ≠ PFK-1

Glucose 6-phosphatase **≠** Glucokinase

Gluconeogenesis: Energy-Consumed

 Six High-Energy Phosphate Bonds Are Consumed for the Conversion of Pyruvate to Glucose

Gluconeogenic Substrates: Lactate (Cori Cycle)

Note: The lactate is formed when the muscle does not have enough oxygen, do to the difference in the amount of oxygen entering the body by breathing and the amount needed to perform an exercise, so muscle form the lactate" by the know anaerobic pathway" to extend the exercise time, after finishing the exercise lactate" toxic" will be converted to glucose again by the liver.

Gluconeogenic Substrates: Glycerol

- Glycerol is released during the hydrolysis of Triacylglycerol (TAG) in adipose tissue.
- Glycerol kinase only in liver & kidneys
- Gluconeogenesis of glycerol occurs in only the cytosol

Gluconeogenic Substrates: Glucogenic Amino Acids (AAs)

 AAs can be derived from hydrolysis of tissue proteins.

The anabolic feature of gluconeogenesis.

> Alanine (Ala) Glycine (Gly)

They are converted to pyruvate then to oxaloacetate then to malate

Gluconeogenesis: Regulation

 Reciprocal control of : Gluconeogenesis (محفز) & Glycolysis(مثبط)

 Allosteric regulation: (↑)Acetyl CoA (Pyruvate carboxylase) (↓)AMP or (↑)ATP (↓)F 2,6-Bisphosphate

Glucagon (
 I/G ratio)
 Allosteric (F 2,6-Bisphosphate)
 Induction (PEP-CK)

#I = Insulin , G = glucagon #دائما_وأبدا : الجلوكاجون والانسولين عكس بعض واحد ارتفع الثاني ينزل

Take Home Message

Gluconeogenesis:

-Synthesis of glucose from noncarbohydrates -Anabolic

-Energy-consuming

➢ Four unique enzymes are required for reversal of the 3 irreversible reactions of glycolysis

> Both gluconeogenesis & glycolysis are reciprocally-regulated

	Glycolysis									
	Reactions	From		Into	E	nzyme used (by)	Type	Type of Step		
1	Phosphorylation	Glucose		Glucose 6-p	1- Hex 2- (tokinase (in most tissues Glucokinase (in liver)	Irreversible	Regulatory		
2	Isomerization	Glucose 6-P	Fructose 6-P		Phos	phoglucose isomerase	Reversible	Not regulated		
3	Phosphorylation	Fructose 6-P	Fructose 1,6 bisphosphate		Phosph	ofructokinase1 (PFK-1)	Irreversible	Most important		
4	Cleavage	Fructose 1,6 bisphosphate	Dihydroxyacetone phosphate (DHAP)			Aldolase	Reversible	Not regulated		
5	Isomerization	Dihydroxyacetone phosphate (DHAP)	2 n	nolecules of glyceraldehyde 3-P.	Т	riose-P isomerase	Reversible	Not regulated		
6	Oxidation	Glyceraldehyde 3-P	1,3	-bisphosphoglycerate (1,3-BPG)	G	lyceraldehyde 3-P dehydrogenase	-	-		
7	Synthesis	1,3-BPG	3-phosphoglycerate		Pho	sphoglycerate kinase	Reversible	Not regulated		
8	Shift P group	Carbon 3	Carbon 2		Phos	phoglycerate mutase	Reversible	Not regulated		
9	Dehydration	2-P glycerate	Phosphoenolpyruvate (PEP)			Enolase	Reversible	Not regulated		
10	Formation	PEP	Pyruvate		Py	ruvate kinase (PK)	Irreversible	Regulatory		
	Reactions of Krebs Cycle									
	Reactions	From	Into		E	nzyme used (by)	Type of Step			
1	Synthesis	acetyl CoA + OAA	Citrate			citrate synthase	inhibits PFK-1			
2	Isomerization	Citrate	isocitrate			aconitase	-			
3	Oxidation & decarboxylation	Isocitrate	αKG		isoc	itrate dehydrogenase	oxidative phosphorylation			
4	Oxidation & decarboxylation	αKG	succinyl CoA		αKG d	ehydrogenase complex	oxidative phosphorylation			
5	Cleavage	succinyl CoA	succinate		su	ccinate thiokinase	substrate-level phosphorylation			
6	Oxidation	succinate	fumarate		succinate dehydrogenase		oxidative phosphorylation			
7	Hydration	fumarate	L-malate		fumarase		-			
8	Oxidation	L-malate	OAA		malate dehydrogenase		oxidative phosphorylation			
	Gluconeogenesis									
	Glycolysis step (Enzyme)			From→ Into		Gluconeogenesis	Information			
1	1 2PEP → Pyruvate (Pyruvate Kinase) 1-(Carboxylation reaction) 2-(Decarboxylation & phosphorylation reaction)		1-Pyruvate→Oxaloacetate		Pyruvate Caroxylase	Requires ATP,Biotin Happens in Mitochondria				
2			2-Oxaloacetate \rightarrow PEP		PEPCK	Requires GTP, happens in Cytosol				
3	3 Fructose 6-P → Fructose 1,6 Bisphosphate (PFK-1) (Dephosphorylation reaction)			Fructose 1,6 Bisphosphate → Fructose 6-P		Fructose 1,6 Bisphosphatase	Inhibited by high levels of AMP Activated by high levels of ATP			
4	4 Glucose → Glucose 6-P (Hexokinase) (Dephosphorylation reaction)			Glucose 6-P \rightarrow Glucose		Glucose 6-Phosphatase	Enzyme is found only in liver and kidney			

QUIZ Q1: Gluconeogenesis occurs mainly in

- a. Liver
- b. Kidney
- c. Bone marrow

Q2: Glutamate enters Krebs cycle by being converted to

- a. Succinate
- b. Fumarate
- c. Alpha ketoglutarate
- Q3:Glucneogenesis is
- a. Catabolic
- b. Anabolic
- c. Energy-yielding

QUIZ

Q4: Pyruvate carboxylase is induced by

- a. Oxaloacetate
- b. Acetyl co a
- c. AMP

Q5:Oxaloacetate can't cross the cell membrane so it is converted to........, then back to oxaloacetate

- a. Malate
- b. Fumarate
- c. Phosphoenolpyruvate

Q6: One of the unique enzymes of gluconeogenesis

- a. Glucokinase
- b. Glucose-6-phosphatase
- c. Phosphoglycerate mutase

True or False

Q7: Gluconeogenesis and glycolysis are reciprocally regulated

Q8: Gluconeogenesis always occurs in both mitochondria and cytosol

Q9: An increase in Insulin Glucagon ratio means induction of gluconeogenesis

Q10: Fructose 1,6-bisphosphatase converts Fructose 1,6-bisphosphate to Fructose 6phosphate

ANSWERS

- 1. A
- 2. C
- 3. B
- **4**. B
- 5. A
- 6. B
- 7. T
 8. F

F
 T

<u> شهد العنزي.</u> - نوره الرميح . <u>- جواهر الحربي.</u> - منيره الحس<u>ن</u> - ساره العنز<u>ي.</u> - دلال الحزيمي. - نوره القحط<u>اني.</u> - بدور جليدان. - علا النهير. - أفنان المالكي. - فاطمه الدين. - جو هر ه المالكي. - خوله العريني. - لجين السواط - منيال باوزير. - رزان السبتى . - ر هف العباد - وضحى العتيبي. <u>- ساره الحسين ب</u>

شكر خاص لصديقتنا: نوف التويجري.

:Boys Team

iochemistry Team

- عبدالعزيز المالكي. - مهند الزهراني. - أحمد الرويلي . - محمد الصبهيل . - خالد النعيم - إبراهيم الشايع. - عبد الله الشنيفي.

* نستقبل إقتراحاتكم وملاحظاتكم على: 435biochemteam

435biochemistryteam@gmail.com

@biochemteam435

M

a

435 Biochemistry Team