

MOLECULAR BIOLOGY 2

Very important

Extra explanation

"STAY FOCUSED TO STAY ALIVE"

- To understand DNA replication
- To know the transcription of genetic material into messenger RNA
- •To get an idea about the translation of mRNA into a functional protein.

FEATURES OF EUKARYOTIC DNA & DNA REPLICATION

- DNA is the genetic material, therefore it must:
- 1- Replicate faithfully
- 2- Have the coding ability to produce proteins for all cellular functions
- DNA replication
- <u>1- Semiconservative</u> with respect to parental strand.

Daughter DNA molecules contain one <u>parental stand</u> and one <u>newly strand</u>.

- 3-Primed by short stretches of RNA.
- 4- Semi-discontinuous:

^{*(} Leading strand *Red* lagging strand *Blue*) are synthesized in their 5'→3' direction

Then: DNA polymerase fills the gaps by DNA nucleotides.
 6- DNA Ligase
 forms bonds between sugar phosphate backbone

DNA REPLICATION

- <u>DNA polymerases</u> can only add nucleotides to 5→3 of a growing DNA strand.
- At the replication fork, one parental strand the <u>Leading Strand</u> (synthesis continues in a 5' to 3' direction)
- The other parental strand the <u>Lagging strand</u>
 (Discontinuous synthesis produces 5' to 3'), is copied away from the fork in <u>short segments</u> (Okazaki <u>fragments</u>).
- So DNA polymerase fills the gaps, and (1-Ligase) forms bonds between sugar phosphate backbone

STEPS IN DNA REPLICATION :

: نقبل لا نبدأ القصة لازم نتعرف على الشخصيات الأساسيه

HELICASE

I am the unzipper enzyme .. I unzip the two strands DNA ©

DNA POLYMERASE

I am a master builder! ... I build the complementary strands © .. I add nucleotides only to the 3' end of the growing DNA strand

PRIMASE

This way Master builder!

LIGASE

I am the Gluer!

#STEPS IN DNA REPLICATION :

1-DNA Helicase comes and binds to DNA sequences called <u>origins</u> and unwinds (unzips :P) the DNA strands.

2-Single-Stranded binding proteins binds to the DNA strands to keep them separated (prevent the strands from rewinding).

3-Primase comes in and then makes RNA Primer on both strands.

-This Is really important because otherwise when DNA polymerase comes in it won't know where to start!

- <u>primer:</u> is a short segment of RNA that is complementary to DNA.

#STEPS IN DNA REPLICATION @:

4-DNA polymerase:

- DNA polymerase comes in but ...!
- 1- We have two strands and these two strands are not identical they complement each other + they are antiparallel! *one goes from 5'→3' and the other goes from 3'→5'*
 2- It can only add nucleotides to 3' end of the growing DNA strand!
- it's okay with <u>5'→3'</u> strand which is called <u>Leading Strand</u>.
- The other <u>3'→5'</u> strand which is called <u>lagging strand</u> will make a little tricky! So DNA polymerase will Add DNA nucleotides and forms Okazaki fragments.

#STEPS IN DNA REPLICATION @:

6-DNA polymerase fills the gaps.

7-Ligase forms bonds between sugar-phosphate backbone

DIFFERENCES BETWEEN LEADING STRAND AND LAGGING STRAND

هذي مقارنة خارجيه قد تساعدكم في فهم العملية وفي فهم الفرق بين الليدنق ستراند واللاقنق سترند:

No	Leading Strand	Lagging strand	
1	It is a replicated strand of DNA which grows continuously without any gap.	It is a replicated strand of DNA which is formed in short segments called: okazaki fragments. Its growth is discontinues.	
2	It does not require DNA ligase.	DNA ligase is required for joining okazaki fragments.	
3	The direction of growth of the leading strand is $5' \rightarrow 3'$	The direction of growth of the lagging strand is 3'→5' through in each okazaki fragment it is 5'→3'	
4	Only a single RNA Primer is required.	Starting of each okazaki fragment requires a new RNA primer.	
5	Formation of leading strand is quite rapid.	Formation of lagging strand is slower.	
6	Its template open in 3'→5' direction.	Its template open in 5'→3' direction.	

A portion of **DNA** (a **gene**) is transcribed into messenger RNA (**mRNA**).

Direction of transcription

 $5 \rightarrow 3$ direction.

Transcription

The transcribed strand in transcription

Only one of the DNA <u>antisense</u> strand(3→5) strands is transcribed.

Responsible enzyme

RNA polymerase II

*NOTE: The transcription of mRNA is done in one DNA strand only(<u>antisense</u>), the one with 3 to 5 end, but the transcription it's self done in 5 to 3 direction.

TRANSCRPITION

1- Chain initiation:

RNA polymerase II binds to <u>promoter region</u> of DNA to start transcription.

2- Chain elongation:

- a) Starts when portion of DNA **unwinds** (at the point of RNA synthesis).
- b) RNA polymerase II moves along the template strand of the DNA Synthesizing the complementary single stranded mRNA molecules.
 - *the direction of transcription is from 5'→3'*
- c) as the RNA polymerase II moves the double helix rewinds.
- d) This forms a short length of RNA-DNA hybrid

3- Chain Termination:

Transcription stops proceeding when it reaches a specific sequence on the DNA (at a sequence of 4-10 AT base pairs).

iochemistry Tea⁴⁵⁵

POST-TRANSCRIPTIONAL MODIFICATION

Before mRNA leaves the nucleus it is modified to be protected and mature.

Capping

Addition of methylated guanine nucleotide at 5' end of mRNA

Function:

- **1-** To prevent mRNA degradation by exonucleases.
- **2-** It helps the transcript bind to the ribosome during protein synthesis.

Modifications of mRNA

polyadenylation

Addition of a poly(A) tail (a highly conserved AAUAA sequence) at 3' end of mRNA.

Functions:

- 1- To protect the mRNA from degradation.
- 2- For ribosomal RNA recognition

Intron removal

for releasing mature mRNA from nucleus.

NOTE: function of intron is regulation of mRNA transcription.

CENTRAL DOGMA OF MOLECULAR BIOLOGY

Central dogma of molecular biology:

The flow of information from DNA to RNA to Protein.

 A portion of DNA called gene is transcribed to mRNA

Translation (protein synthesis) & possible codons

What is translation?

A process of protein synthesis from mRNA

- mRNA has genetic codes for amino acids present in proteins.
- The **genetic code** is a dictionary that identifies the correspondence between a sequence of nucleotide bases and a sequence of amino acids.
- Each individual word in the code is composed of three nucleotide bases (<u>codons</u>).

- الكودون هو عبارة عن ثلاثة نيوكليوتيدات تكون موجودة على شريط mRNAوكل كودون يشفر حمضاً أمينياً واحداً ، يمكن لعدة كودونات مختلفة تشفير نفس الحمض الأميني.
- من المهم جداً معرفة أسماء كودونات البداية و الإيقاف. *To memorize stop codons :

UAA (u are away) – UAG (u are gone) – UGA (u go away)

		Secon	d base		
	U	С	Α	G	
u	UUU Phe UUC Leu UUG Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGA Stop UGG Trp	U C A G
(5' end)	CUU CUA Leu	CCU CCC CCA CCG	CAU His CAC GIn CAG	CGU CGA CGG	(3′ end)
First base	AUU IIe AUA Met or start	ACU ACC ACA ACG	AAU Asn AAA Lys	AGU Ser AGC AGA AGA Arg	D A G Third base
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA Glu	GGU GGC GGA GGG	U C A G

Required components for translation

• <u>Aminoacyl-tRNA synthesae</u>: is an enzyme that attaches the appropriate amino acid onto its tRNA.

Summary of translation stages

1- Initiation

brings together mRNA, tRNA (with the first amino acid) and the two ribosomal subunits (large & small).

2- Elongation

3- Termination

Occurs when one of the three stop codons reaches the A site.

DNA REPLICATION

HTTPS://WWW.YOUTUBE.COM/WATCH?V=VNXFK D6Y80

أنصح بهذا الفيديو لأن https://www.youtube.com/watch?v=5qSrmeiWsuc ← اقتبسنا القصة منه

TRANSCRIPTION

https://www.youtube.com/watch?v=ztPkv7wc3yU

Translation.

https://www.youtube.com/watch?v=KZBIjAM6B1s

Boys Team:

- عبدالعزيز المالكي.
 - مهند الزهراني.
 - أحمد الرويلي .
 - محمد الصهيل
 - خالد النعيم .
 - إبراهيم الشايع.
 - محمد الدغيثر.
 - عبد الله الشنبفي.
- * نستقبل إقتراحاتكم وملاحظاتكم على:

@435biochemteam

435biochemistryteam@gmail.com

Girls Team:

- شهد العنزي.
- نوره الرميح.
- بدور جليدان.
 - ـ علا النهير.
- أفنان المالكي.
- أمجاد الدهيش.
- دلال الحزيمي.
 - ً فاطمه الدين
- جواهر الحربي.
- جو هره المالكي.
- خوله العربني.
- لجين السواط.
- منيال باوزير.
- نوره القحطاني.
- رزان السبتى .
- رهف العباد .
- وضحى العتيبي.
- ساره العنزي .