


Introduction to
Histology and Cell
Structure

# Objectives:

- ■What is histology and how it is studied.
- ■Composition of the cell and function of each component:
- 1. Nucleus
- 2. Cytoplasm.
  - Organelles: membranous and nonmembranous.
  - ■Inclusions.



# Introduction

Histology: it is the microscopic study of normal tissue.

# Types of microscopes:

- -Light Microscope (LM) image appears colored
- -Electron Microscope (EM) image appears black & white

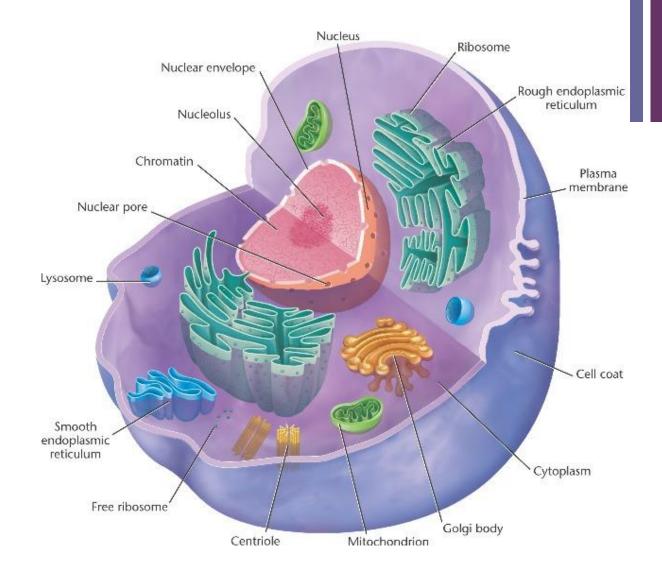
Cells → Tissues → Organs → Systems

Basophilic: Appears Blue Acidophilic: Appears Red

\*nucleus is always basophilic

\*cytoplasm could be basophilic OR acidophilic




# Cell

It is the functional unit of all tissue.

It differs in size and shape.

The cell is formed of

- 1) Nucleus
- 2) Cytoplasm





Nuclear envelope

Chromatin

Nucleolus

Nucleoplasm

#### **FUNCTION of the Nucleus:**

- Essential for vitality and division of the cell
- The site of storage of genetic material
- The site of formation of the 3 RNAs (mRNA, rRna, tRNA)

# Anatomy of the Nucleus Nucleolus Endoplasmic Reticulum Figure 1 Ribosomes

# Nuclear Envelope:

Double membrane with pores

- a. Outer Membrane
- b. Inner Membrane
- c. Nuclear Pores

#### **FUNCTION** of the Nuclear Envelope:

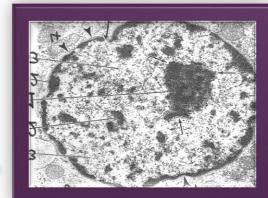
- Provides communication between nucleus and cytoplasm

#### **Chromatin:**

#### Formed of DNA

- a. Euchromatin: Extended, active, pale.
- b. Heterochromatin: Condensed, inactive, dense.

#### **FUNCTIONS** of the Nucleolus:


 Formation of rRna which is responsible for protein synthesis in cytoplasm

**FUNCTIONS of Chromatin:** 

Carries genetic information.

Directs protein synthesis

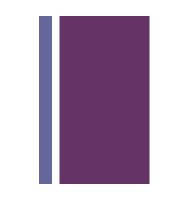




## Nucleolus: (usually one)

- EM: Appears as a dark mass, not surrounded by a membrane.
- LM: Appears as a spherical dark basophilic mass.

## **FUNCTIONS** of the Nucleoplasm:

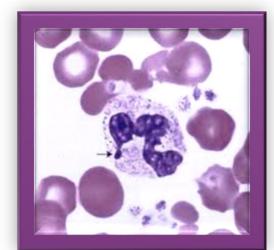

Provides medium for movement of the 3 types of RNA from the nucleus to the cytoplasm

## Nucleoplasm:

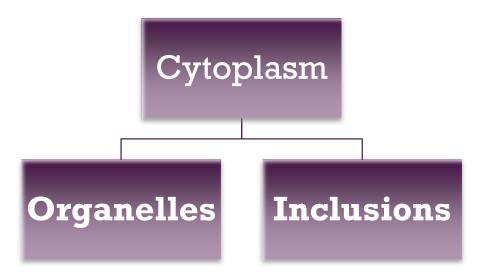
- Clear fluid medium
- contents of the nucleus are embedded in it.



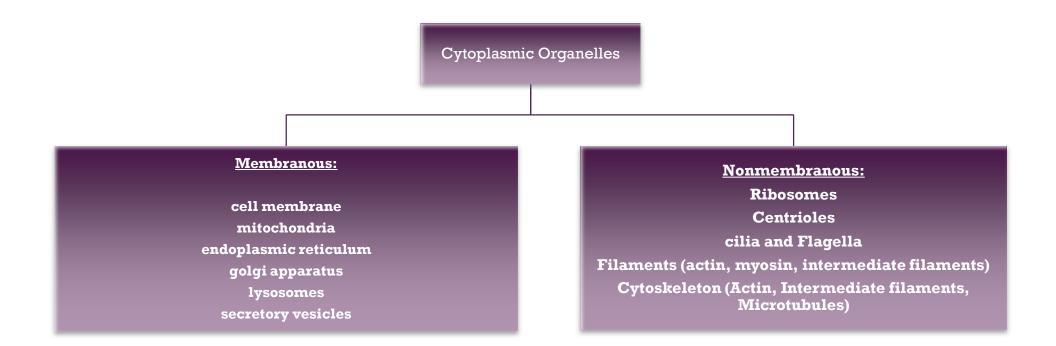
# Sex Chromatin (Barr Body)




Dark stained mass of chromatin, usually adherent to the inner aspect of the nuclear envelope of the female somatic cells.


Example: Buccal epithelial cells

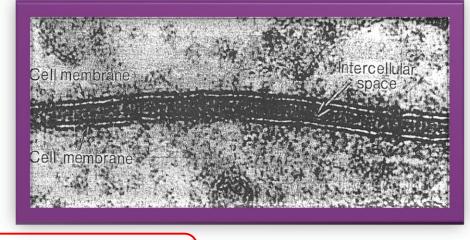
#### **Characteristics:**


- -Drum stick mass protruding from the nucleus of neutrophils
- Presents one of the two X chromosomes which is inactive in normal female.
- Seen in normal female cells
- Seen in males with Klinefelter's Syndrome (XXY)








**Organelles:** Specialized structures essential for vital process of the cell.

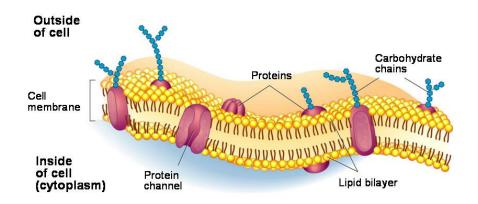


**Inclusions:** Not essential for cells vitality, may be present or absent.

## <u>examples</u>:

- lipids
- glycogen
- pigments (melanin and lipofuscin)




## Cell membrane: A very thin membrane surrounding the cell.

\*how it appears under:

| LM (Light Microscope) | EM (Electron<br>Microscope)                                           |
|-----------------------|-----------------------------------------------------------------------|
| Not visible           | 2 dark lines separated<br>by a light line. (Trilaminar<br>appearance) |

#### **FUNCTION of The CM:**

- Selective barrier



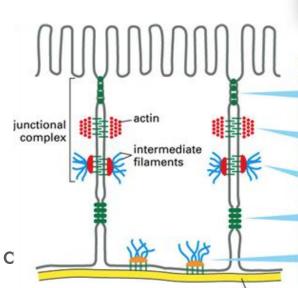
## chemical structure:

- Phospholipid molecules: arranged in two layers.
- Protein molecules: peripheral and integral proteins.
- Carbohydrate molecules: attached to either proteins or lipids (glycoproteins and glycolipids) and forming the surface or cell coat.

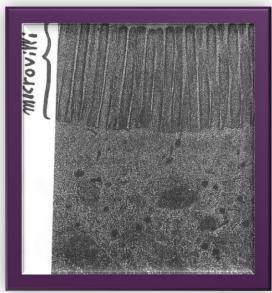
#### **FUNCTION of Cell Coat:**

- Protection of the cell.
- Cell recognition and adhesion.

# + Cell Membrane: (continued)


#### **Specialization of cell membrane:**

Cilia: Long motile hair-like structures surrounded by cell membrane. Their core is made of microtubules.


Microvilli (brush border): Cylindrical cytoplasmic projections of apical surface to increase surface area. Their core contains actin filaments.

## **Intercellular junctions:** composed of:

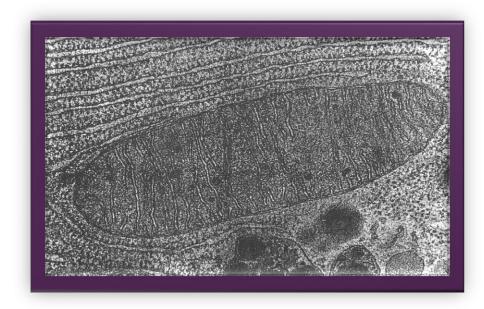
- Occluding (tight) junction: seals the intercellular space.
- Adherening junction: fixes adjacent cells together
- Gap junction:
  Allows free communication between the c



basal lamina



| name                 | function                                                                                                   |
|----------------------|------------------------------------------------------------------------------------------------------------|
| tight<br>junction    | seals neighboring cells together in an<br>epithelial sheet to prevent leakage<br>of molecules between them |
| adherens<br>junction | joins an actin bundle in one cell<br>to a similar bundle in a<br>neighboring cell                          |
| desmosome            | joins the intermediate filaments in one cell to those in a neighbor                                        |
| gap<br>junction      | allows the passage of small water-soluble ions and molecules                                               |
| hemidesmosome        | anchors intermediate filaments<br>in a cell to the basal lamina                                            |


NOTE:

When a combination of occluding and adherening junctions (zonula and desmosome adherening junctions) is present, it is called a Junctional Complex.

+

**Mitochondria:** Rod-shaped. Its wall is composed of 2 membranes, the outer is smooth while the inner is folded, these folds form Cristae

The cavity is filled with mitochondrial matrix, which contains enzymes and its own DNA



#### **Functions:**

- Generates ATP (the source of cell's energy)
- They're called the powerhouse of the cell
- It forms its own protiens and undergo self replication

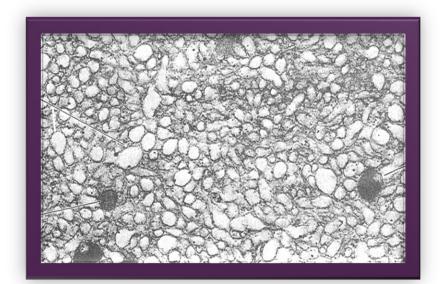


# **Endoplasmic Reticulum (ER):**

System of communicating membranous tubules, vesicles and flat vesicles (cisternae)

**Rough ER:** Membranous sheets of flat tubules and vesicles with ribosomes on the surface

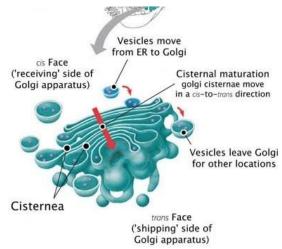
#### **Functions:**


- Synthesis of protein by ribosomes
- Transfer vesicles that transfer protein to golgi



**Smooth ER:** Membranous tubules and vesicles with NO ribosomes on the surface

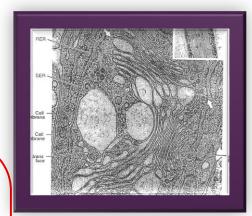
#### **Functions:**


- Synthesis of lipids, cholesterol and steroids
- Detoxification
- Helps muscles contracting by acting as calcium pump





# Golgi Apparatus: The secretory apparatus of the cell.


Consists of stacked saucer shaped flat vesicles



Each vesicle has two faces: Convex: (forming face) that receives transfer vesicles Concave: (mature face) that forms secretory vesicles

# FUNCTIONS of Golgi Apparatus:

- sorting, modification and packing of protiens
- secretory vesicles formation
- formation of lysosomes



# Lysosomes:

The digestive apparatus of the cell.

Contains hydrolytic enzymes.

Originates from the mature surface of Golgi (Hydrolytic enzymes are formed in rough ER)

Appearance: EM > Spherical membranous vesicles

## **FUNCTIONS** of Lysosomes:

 Intracellular digestion of ingested materials or old organelles.



#### Ribosomes:

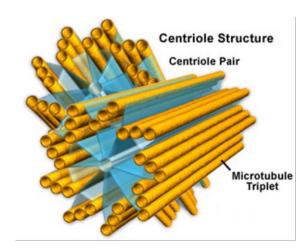
Consist of ribosomal RNA combined with protein.

Formed in the nucleolus

#### **Function:**

Protein synthesis

#### Appearance:


- EM > 2 subunits that are free in the cytoplasm (may form polyribosome)
- LM > Basophilic
   cytoplasm due to
   humerous ribosomes

## **Centrioles:**

2 cylinders which are perpendicular to each other.

Their wall is made of 9 triplets of microtubules

(9x3 = 27 microtubules)



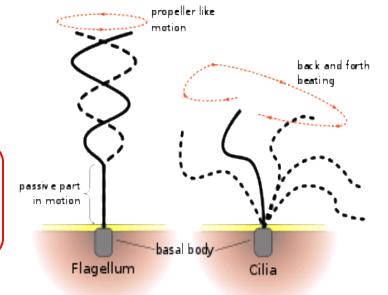
#### **Function:**

- Essential for cell division
- Formation of cilia and flagella

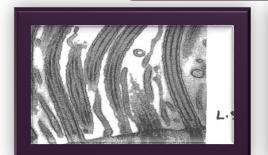


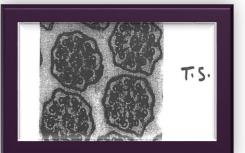
# Cilia and Flagella

## Cilia:


- hair like striations on the free surface of some cells. (basal body is similar to centriole
- Shaft form of 9 doublets and 2 central singlets of microtubules (9x2 +2 = 20)

Function: Movement of particles or fluids on the cell's free surface in one direction


# Flagella:


- Longer and larger than Cilia
- Forms the tails of sperm

**Function:** Important for movement of the sperm

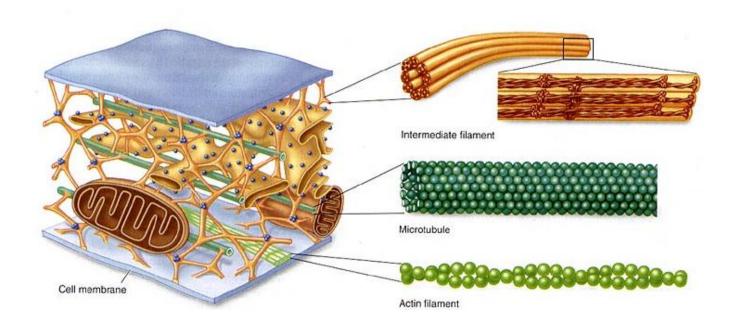


Centrioles, Cilia and Flagella are all microtubules-containing organelles





# Cytoskeleton:


■ The structural skeleton of the cell

#### **Functions:**

- Maintaining the cell's shape
- Helps transport materials within the cell

#### Consists of:

- Microfilaments
- Microtubules
- Intermediate filaments



+

# H & E Stains

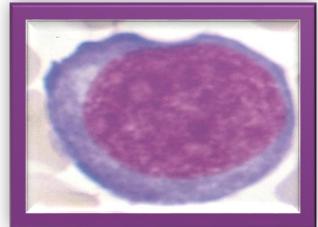
## H:

If the structure turns blue:

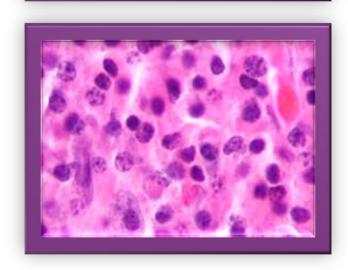
The structure is BASOPHILIC

#### If nothing happen:

The structure is not basophilic


#### E:

If the structure turns red:


The structure is ACIDOPHILIC

## If nothing happens:

The structure is not acidophilic



- The sections are cut and mounted on glass slides
- The sections are then stained with Hematoxylin(H) and Eosin(E)
- H > Basic stain > If the structure reacts with H it turns blue > Basophilic
- E > Acidic stain > If the structure reacts with E it turns red >
   Acidophilic





# Extra Links

#### **■ Videos:**

■ Cell Organelles
<a href="https://www.youtube.com/watch?v=f">https://www.youtube.com/watch?v=f</a>
<a href="https://www.youtube.com/watch?v=f">KEaTt9heNM&feature=iv&src vid=LP</a>
<a href="mailto:7xAr2FDFU&annotation">7xAr2FDFU&annotation</a>
<a href="mailto:19283">n 219283</a>

■ EUCHROMATIN and HETEROCHROMATIN (forward 50 seconds) https://www.youtube.com/watch?v=sUFLjHCc8bY

Intracellular Junctions https://www.youtube.com/watch?v= mbiM-y7k6Qk

#### Quiz:

https://www.onlinequizcreator.com/histology/quiz-114735

Study while others are loathing while others are wishing propers are which while



# Credit

#### **TEAM MEMBERS:**

- Noura AlTawil
- Shadn Alomran
- Shahad Albeshr
- Sadeem Alqahtani
- Nouf Alabdulkarim
- Muneerah AlOmari
- Hanan Alabdullah
- Ghadah Alqasimi
- Adnan Alkhaldi
- Mohammed Amarshoud
- Abdulkarim Alharbi
- Khalid Alghsoon
- Anas Ali
- Abdullad Alshathry

#### **TEAM LEADERS:**

- Areeb AlOkaiel
- Hazim Bajri

Thanks for checking our work, Good luck.

-Team histology.

