

PHARMACOLOGY

Drug Administration And Absorption

OBJECTIVE:

- Know the meaning of pharmacology and its branches.
- Discuss the different routes of drug administration
- Identify the advantages and disadvantages of various routes of drug administration
- Know the various mechanisms of drug absorption
- List different factors affecting drug absorption
- Define bioavailability and factors affecting it.

Pharmacology

Pharmacology

A science that deals with the drugs regarding classification, pharmacokinetics, pharmacodynamics, side effects and uses.

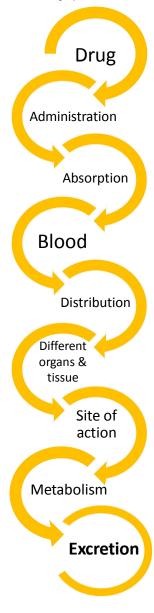
Pharmacokinetics:

(what the body does to a drug?)

Pharmacodynamics

(what the drug does to the body?)

Pharmacodynamics:


- 1. Mechanisms of drug action
- 2. Pharmacological effects of drugs

Pharmacokinetics(ADME):

- Absorption
- Distribution
- Metabolism
- Excretion

Routes of drug administration:

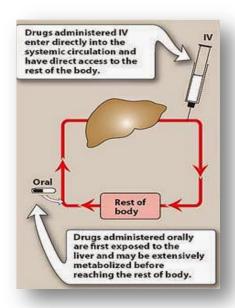
- 1. Enteral(Oral Sublingual Rectal)
- 2. Inhalation
- 3. Parenteral(Injections)
- 4. Topical application

Routes of drug administration:

1- Enteral via gastrointestinal tract (GIT):

	Advantage	Disadvantage
Oral	 Common Easy Self use convenient cheap No need for sterilization. 	 Slow effect, GIT irritation. Destruction by pH and enzymes. Food - drug interactions. Drug-drug interactions. First pass effect. No complete absorption. Low bioavailability. Not suitable for vomiting and unconscious patient and emergency and bad taste drugs.
Sublingual	 Rapid effect can be used in emergency High bioavailability No first pass effect. No GIT irritation No food drug – interaction Dosage form: friable tablet (easily breaks and dissolves) 	• <u>not suitable</u> for : Irritant drugs Frequent use
Rectal	 Suitable for children, vomiting, unconscious patients Irritant & bad taste drugs less first pass metabolism (50%) Dosage form suppository or enema 	 Irritation of rectal mucosa Irregular absorption & bioavailability

First pass effect:


Drugs given orally via portal taken to the liver and metabolized reaching to the blood to be distributed to body compartments

First pass metabolism results:

- Low bioavailability (low conc. of drug in blood).
- Short duration of action (t ½).
- drugs with high first pass effect should <u>not</u> be given orally <u>but</u> parenterally.

Where it occur:

- Liver (mainly).
- Gut Wall.
- IT Lumen.

Oral Dosage Forms "oral formulations":

Tablets: Coated tablets: sugar-coated to mask bad taste

Enteric coated tablets: dissolve only in intestine

Capsules: Hard gelatin capsules: (contain powder)

Soft gelatin capsules: (contains liquid)

Syrup: (e.g. Cough syrups)

Suspension: "mixture of solid in liquids" e.g. antibiotics

Routes of drug administration:

2- Inhalation:

	Advantage	Disadvantage
Inhalation	 Rapid absorption (due to large surface area) Immediate Effects Iimited systemic effect Ideal For Gases Effective Local Effect Dose Can Be Titrated Suitable For Emergency Fewer Side Effects 	 addictive route patients may have difficulty using inhalers patients may have difficulty regulating dose Not suitable for irritant drugs Only few drugs can be used

3- Parenteral (injection):

	Advantage	Disadvantage
Parenteral	 No first-pass metabolism Have Highest Bioavailability No food-drug / drug-drug interaction No gastric irritation 	 Need skill Pain, tissue necrosis or abscess (I.M) Anaphylactic reaction (I.V)

Type of Parenteral:

Intradermal (I.D) (into skin)	Subcutaneous (S.C) (Under skin)	Intramuscular (I.M) (into muscle)	Intravenous (I.V) (into veins)
Intra-arterial (I.A) (into arteries)	Intrathecal (I.T) (cerebrospinal fluids)	Intraperitoneal (I.P) (peritoneal cavity)	Intra-articular (Synovial fluids)

Parentral

	Advantage	Disadvantage	Volume
Intradermal (I.D)	suitable for vaccinationssensitivity test	Not suitable for large volumes.	0.1 ml
Subcutaneous (S.C)	 Used for sustained release effect Suitable to poorly soluble & suspensions & for Instillation of slow-release implants e.g. insulin zinc preparation 	Not suitable for large volumes	0.1ml –1ml
Intramuscular (I.M)	 prolonged duration of action oily preparations or poorly soluble substances can be used 	 Not suitable for irritant drugs pain, abscess, tissue necrosis may happen 	3-5ml
Intravenous (I.V)	 Large volume Rapid action (emergency) _High bioavailability No food-drug interaction No first pass metabolism No gastric irritation Suitable for Vomiting, unconscious ,Irritant & bad taste drugs. 	 used only for water soluble drugs Infection Anaphylaxis Sterilization Expensive Not suitable for oily solutions or poorly soluble substance Must inject solutions slowly as a rule 	500ml

4- Topical application

Drugs are mainly applied topically to produce local effects. They are applied to

- Skin (percutaneous) e.g. allergy test, topical antibacterial and steroids and local anesthetics.
- Mucous membrane of respiratory tract (Inhalation) e.g. asthma
- Eye drops e.g. conjunctivitis
- Ear drops e.g. otitis externa
- Intranasal e.g. decongestant nasal spray

Transdermal patch:

Is a medicated adhesive patch that is placed on the skin to deliver a specific dose of medication through the skin and into the bloodstream. Girl's definition: are medicated adhesive patch applied to skin to provide systemic effect (prolonged drug action)

- e.g. the nicotine patches (quit smoking).
- e.g. Scopolamine (vestibular depressant, antiemetic for motion sickness).

Ampoule (single use)

Vial (repeated use)

Atomizer

Nebulizer

(Parenteral Dosage Forms)

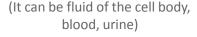
(Inhalation Dosage Forms)

Drug Absorption

DEFINITION: the passage of drug from it's site of administration to site of action across cell membranes.

EXCEPTION: Except for intravenous administration, all routes of drug administration require that the drug be transported from the site of administration into the systemic circulation. (I.V. administration requires no absorption)

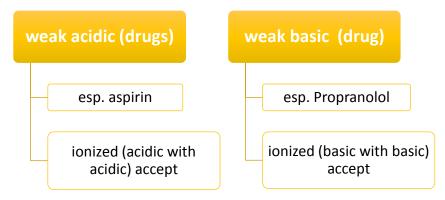
Mechanisms of drug absorption:


Simple diffusion(passive diffusion):

Aqueous diffusion: low molecular weight through aqueous channel or pores in cell membrane (filtration)

Lipid diffusion: low molecular weight & lipid soluble drugs through lipid cell membrane

- Facilitated diffusion
- Active transport
- Pinocytosis(Endocytosis):
 - for high molecular weight drugs such as peptides
- high polar substances such as vitamin B12(combines with intrinsic factor) & iron (combines with transferrin)


Passive Diffusion	Active Diffusion	Facilitated Diffusion
ALONG Concentration Gradient	AGAINST Concentration Gradient	ALONG Concentration Gradient
No Energy & Carrier	Requires Energy & Carrier	No Energy But Requires Carrier
Common	Uncommon	
Not Saturable	Saturable	Saturable
Non Selective	Selective (Specific)	Selective
DEPEND ON Lipid Solubility	E.G. Absorption Of Sugar & Amino Acid	E.G. Similar To Entry Of Glucose Into Muscle
DEPEND ON Pka Of Drug & PH Of The Environment	Uptake Of Levodopa* By Brain	

Pka and PH effect drug

Pka effect & PH:

Note:

- Drugs can exist in 2 forms in equilibrium : ionized (water soluble)
 unionized (lipid soluble)
- Only UNIONIZED form is absorbable
- Ionization of drugs reduces passage of drugs across cell membrane
- The degree of ionization of drugs is determined by their pKa and pH surrounding
- 50% of the drugs will be unionized and 50% of the drugs will be ionized.
- Basic drugs are best absorbed in the intestine
- Acidic drugs are best absorbed in the stomach

Factors affecting absorption:

Route of administration	Dosage forms (particle size, ease of dissolution) (solution > suspension > capsule > tablet)	Molecular weight of drug
Lipid and drug solubility (aqueous preparation better than oily, suspension preparation)	Degree of ionization	Chemical instability in gastric pH
Surface area available for absorption (small intestine has large surface area than stomach due to intestinal microvilli)	Blood flow to absorptive site (greater blood flow increases bioavailability) (intestine has greater blood flow than stomach)	Intestinal motility (transit time) (Diarrhea reduces absorption)
Gastric emptying (drugs that increase gastric emptying enhance absorption (metoclopramide))	Drug interactions	Food (Slow gastric emptying, generally slow absorption) (A fatty meal increases the absorption of fat soluble antifungal drug (e.g. griseofulvin))

THANK YOU FOR CHECKING OUR WORK THE PHARMACOLOGY TEAM

عبدالرحمن السياري خالد الز هراني عبدالله الجنيدل أحمد المصعبي مهند الزيد عبدالرحمن الشمري معاذ باعشن عبدالعزيز الشعلان

ديمه الراجحي

مریم سعیدان كيان كعكى ساره الخليفه نورة الطويل رنيم الدبيخي اسرار باطرفي منيرة الحسن کو ٹر المو سے نوف العبدالكريم هديل الغرير لمى الزامل ويم العقيل ريم العقيل رفان هاشم سارا الحسين ديمة الفارس نوف الرشيد ياسمين الفارسي نورة العقيل

For any correction, suggestion or any useful information do not hesitate to contact us: Pharmacology.med435@gmail.com

