

PHARMACOLOGY

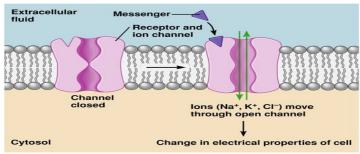
Receptor Families – Pharmacodynamics III

OBJECTIVE:

- Classify receptors into their main families
- Recognize their different transduction mechanism
- Identify the nature & time frame of their response

Classification of Receptors

1-Channel-Linked Receptor e.g. Nicotinic Acetyl Choline


- 2-G-Protein Coupled Receptors e.g. Muscarinic Acetyl Choline
- 3-Enzyme-Linked Receptors e.g. Insulin
- 4-Nuclear Receptors e.g. Steroid hormones

They are classified based on their:

- Location
- Structure
- Transduction Mechanism
- Nature of Response
- Time scale of Response

Receptor Structure:

- Ligand recognition Site
- Inner domain site

1-Channel-Linked Receptor:

Involved in fast synaptic neurotransmission, ligand binding & opening

occur in milliseconds. (The ligand binds to the receptor which is incorporated as a part of the ionic channel, thus it is activated as long as the ligand is bound to the receptor. (Ionotropic receptor; Membrane receptors coupled directly to ion channels)).

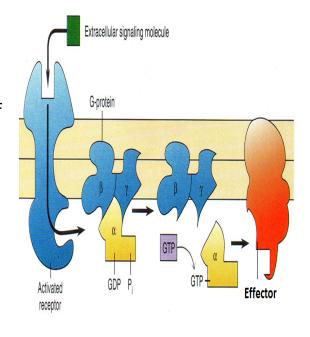
• e.g. Nicotinic Ach receptor is activated by Ach

(Nicotinic Acetyl choline receptor is a pentamer (consists of 5 subunits); it's a sodium/ potassium channel.

When the cell is activated (open or close the receptor) it is depolarized, i.e. the intracellular part is positively charged (e.g. influx of Na+).

When it is inactive, it is repolarized or hyperpolarized, since the intracellular part is negatively charged.

• The receptor is activated by the occupancy of the ligand and not by a change in the action potential as in the voltage-gated ion channel.


2- G-Protein Coupled Receptors:

(Receptors for many hormones & slow transmitters (takes seconds) e.g. mAch & adrenergic receptors)

Mechanism:

- The G- protein consist of 3 subunits $[\alpha\beta\chi]$,the $\alpha\text{-}$ subunit has a GDP bind to it .
- When the receptor is activated by the ligand the trimer G protein will bind to the receptor .
- Once the trimer bind to the receptor the the α subunit will dissociate and the GDP will be displaced by GTP, In this form it will be able to activate the effector .
- Activation of the effector is terminated when the bound GTP molecule is hydrolysed , which allows the α -subunit to recombine with $\beta\chi$.
- There are several types of G- proteins ,which interact with receptors & control different effectors.

Effector: the effector is a macromolecule that mediate the effect of the receptor.

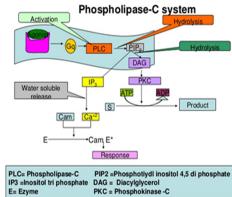
G-Protein Coupled Receptors:

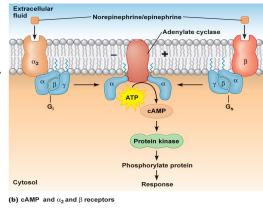
1-lon channels: (Effector)

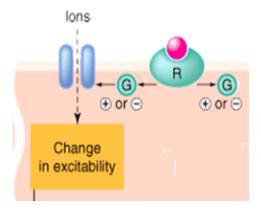
the receptor will either activate or inactivate the ion channel via G-protein.
when the ion channel is activated the cell membrane excitability will be changed.
e.g. K+, Ca++thus affecting membrane excitability, transmitter release.

once the Adenylate cyclase is activated it will convert the ATP into cAMP (secondmessenger) The cAMP will act on protein kinase which will lead to phosphorylation of proteins and trigger a response.

- Lipolysis
- Glycogen synthesis
- Glycogen breakdown
- Fc of heart muscle


3-Phospholipase C: (Effector)


When pip (phosphatidylinositol) hydrolysis it will give two second messenger.


1- well active (IP3):

Ip3(inositol tri phosphate). IP3 goes to the endoplasmic reticulum and releases the stored calcium and so it increases the intracellular calcium. which will lead to(Ca + cam) will activate the enzyme Release of neurotransmitter or contraction of muscle.

2-Diacylglycerol (DAG): will activate Phosphokinase and it well activate other enzymes.

-Classes of G proteins:

Divided according to their α-subunits into **G**_s, **G**_i and **G**_q (**G**_s)stimulation and (**G**_i)inhibition of adenylyl cyclase (AC) (**G**_q)is linked to activation of Phospholipase C system Receptors are selective to a subunit and effector with which they couple

-Classes of receptors:

ADRENOCEPTORS	CHOLINERGIC RECEPTORS	
 <i>a</i>₁ Adrenoceptors couple to G_q to stimulate (PLC) (phospholipase c) 	$M_1 \& M_3$ Ach receptors couple to G_q to stimulate PLC (phospholipase c)	
α_2 Adrenoceptors couple to G _i to inhibit AC (adenylyl cyclase)		
(adenynyn cyclase)	$M_2 \& M_4$ Ach receptors couple to G_i to	
$\beta_{1\&2}$ Adrenoceptors couple to \boldsymbol{G}_{s} to stimulate (AC)	inhibit AC (adenylyl cyclase)	
Adr Inhibitory Receptor G_i C_i $C_$	Ach Stimulatory Receptor Gq M ₃ Ach receptor BY Ca ⁺⁺ Ca ⁺⁺ Blood Vessel	
same drug different receptor opposite effect the same effector by different g proteins	different drugs different receptor same effect same effector same g proteins	
Adrenaline bind to α_2 Adrenoceptors that will activate G_i (Inhibitory) protein. G_i protein will inhibit (AC) that will decrease cAMP Concentration. Adrenaline bind to β Adrenoceptors that will activate G_s (Stimulatory) protein . G_s protein will activate (AC) that will increase cAMP Concentration.	 -acetylcholine work on bronchi by M₃ Ach receptor that will activate G_q proteins and G_q proteins will activate (PLC)phospholipase c that will increase ca Concentration. -adrenaline work on blood vessel by a₁ receptor that will activate G_q proteins and G_q proteins will activate (PLC) that will increase ca Concentration. 	

PHARMACOLOGY :

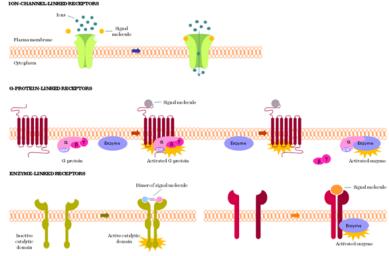
Enzyme linked receptors:

- Located at the cellular membrane
- The receptors have a large extracellular ligand binding domain connect via α-helix to the intracellular domain
- some have intrinsic tyrosine kinase activity
- Receptors for hormones such as : insulin and growth factors , so they are controlling cell growth and differentiation.

Signal transduction:

- Autophosphorylation of tyrosine residue acts as acceptor of SH2*domain of various protein, as a result of allowing control of various cell function.
- This usually require many intracellular signaling steps that take time to process (minutes to hours). SH2*= Src homology 2

Nuclear Receptors (Intercellular Receptors):


Characteristics :

- The Receptor entirely Intercellular.
- The Ligand must have sufficient lipid solubility.
- Receptors consist of **3 Domains** : a conserved **DNA-binding** domain attached to variable **ligand-binding &** transcription control domains.
- DNA-binding domain recognizes specific base sequences (response element), thus **promoting or repressing** particular genes.
- They react as **TRANSCRIPTION FACTORS** expressing or repressing target genes.
- Effects are produced as a result of **protein synthesis**, thus they are **Slow In Onset** (hours & days).
- Pattern of gene activation depends on both cell type & nature of ligands.
- ligands include steroid hormones, vitamin D & thyroid hormone.

Mechanism:

Activation of these factors causes transcription of DNA into RNA and translation of RNA into proteins. The time course of activation and response of

receptors from hours to days.

Synopsis: Characteristics of Receptor families :

	Ligand Gated	G-protein coupled	Enzymatic	Nuclear
Location	Membrane	Membrane	Membrane	Intercellular
Effector	Ion Channel	Ion Channel Or Enzyme	Enzyme	Gene
coupling	Direct	G-protein	Direct	Via DNA
Example	Nicotinic	Muscarinic	Insulin	Steroid, Hormone
Time scale	Milli Seconds	Seconds	Min/Hours	Hours/Days

THANK YOU FOR CHECKING OUR WORK THE PHARMACOLOGY TEAM

عبدالرحمن السياري		مريم سعيدان
خالد الزهراني	ساره الخليفه	کيان کعکي
عبدالله الجنيدل	رنيم الدبيخي	نورة الطويل
أحمد المصعبي	منيرة الحسن	اسرار باطرفي
مهند الزيد	ديمه الراجحي	كوثر الموسى
عبدالرحمن الشمري	هديل الغرير	نوف العبدالكريم
معاذ باعشن	ريم العقيل	لمي الزامل
عبدالعزيز الشعلان	سارا الحسين	رفان هاشم
	نوف الرشيد	ديمة الفارس
	نورة العقيل	ياسمين الفارسي

For any correction, suggestion or any useful information do not hesitate to contact us: Pharmacology.med435@gmail.com

