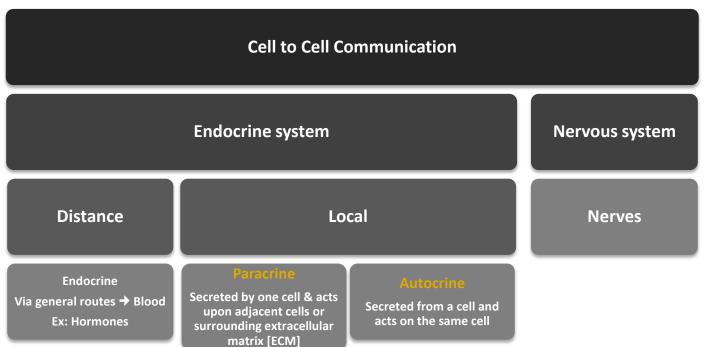
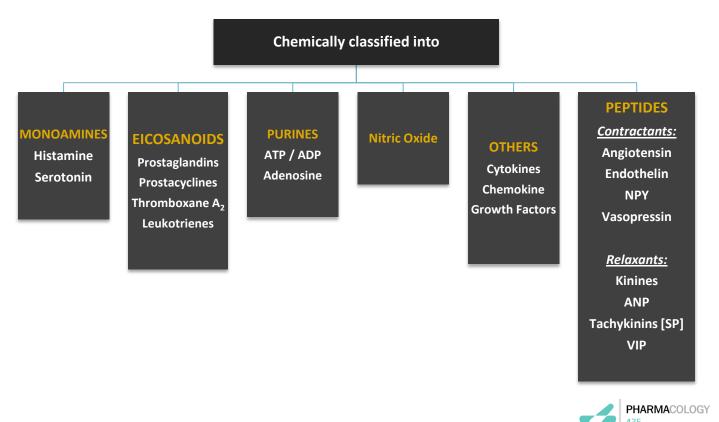


PHARMACOLOGY


Autocrine/Paracrine Mediators

OBJECTIVES:


- Recognize the role of NO in cellular communication.
- Classify the different NOS available
- Expand on its formation, actions termination and pharmacological modulation.
- Identify role of angiotensin in body homeostasis and local regulation.
- Explain its formation, target receptors, feedback regulatory actions, breakdown, intersection with the kinin system and pharmacological modulation.

Cell Communications

Autocrine/Paracrine Mediators:

Autocrine/Paracrine Mediators

General Features of Autocrine/Paracrine Mediators:

Target: Smooth muscles (SMC), vascular or non vascular nerve endings
 [> non-adrenergic non-cholinergic (NANC) co-transmission], heart, exocrine
 glands, CNS, kidney, etc.

2. Existance:

- Preformed & stored in tissues & released by a stimulus [Monoamines (histamine), most peptides]
- Formed in response to a stimulus [NO, eicosanoids, some peptides(angiotensin II, bradykinins), cytokines]

3. Presence:

Constitutive: present all times, to share in normal basic functional regulation within the cells (eNOS / COXI)

Inducible: only present upon demand i.e. gets expressed [gene transcription, mRNA formation and ribosomal translation into protein] (iNOS / COXII)

Nitric Oxide (NO): Highly diffusible stable gas

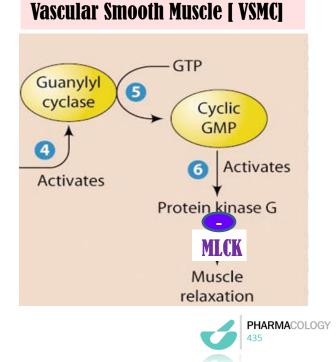
Synthesis:

L-arginine + O2 Nitric Oxide Synthase NO + Citrulline + H2O (NOS)

PHARMACOLOG

Types of NOS:

- 1. n-NOS: Neuronal NOS
- 2. i-NOS: Inducible NOS
- 3. e-NOS: Endothelial NOS


Nitric Oxide

	Type I N-NOS	Type II I-NOS	Type III E-NOS
Place	Cytosol of Neuronal Cells	Cytosol of macrophages, neutrophils, kuppfer cell, etc.	Bound to membrane of endothelial cells, platelets, etc.
Presence	Constitutive	Inducible	Constitutive
Function	-Neuronal Messengers -Cytoprotective	Immunocyto- toxicity	-Relaxation of VSMC -Cytoprotective

 When a Shear Stress or Agonists as; Ach, histamine, bradykinin, bind to receptors intracellular Ca activate eNOS NO formation

Action of Nitric Oxide:

- 1. Vasodilation: (Paracrine)
- Diffuse to VSMC
 Binds soluble GC
 Change GTP to cGMP
 Activate PKG & inhibit Ca
 Inactivate MLCK
 Prevent actin myosin cross link
 No contraction
 RELAXATION

2. Cytoprotection:

(Paracrine Autocrine)

- ↓ platelet aggregation
- ➡ inflammatory cell recruitment

Termination of Action:

(1) By Breakdown of its downstream signal (cGMP) by PDE to form GMP

2 By formation of: - Stable Analogues: with proteins containing SH
 - Free Radical: Peroxynitrite in oxidative stress

Drug Modulation:

Express NOS	Act as NOS Donner	Selective PDE5 Inhibitor	
Statins: Used to reduce cholesterol e.g. Atorvastatin & Estrogen: CVS Cytoprotection	Nitrates: Venulodialator in Angina	Sildenafil:	
	Na Nitroprusside: Arteriolar dilator in Hypertension	Erectile Dysfunction	

PHARMACOLOGY

Angiotensin

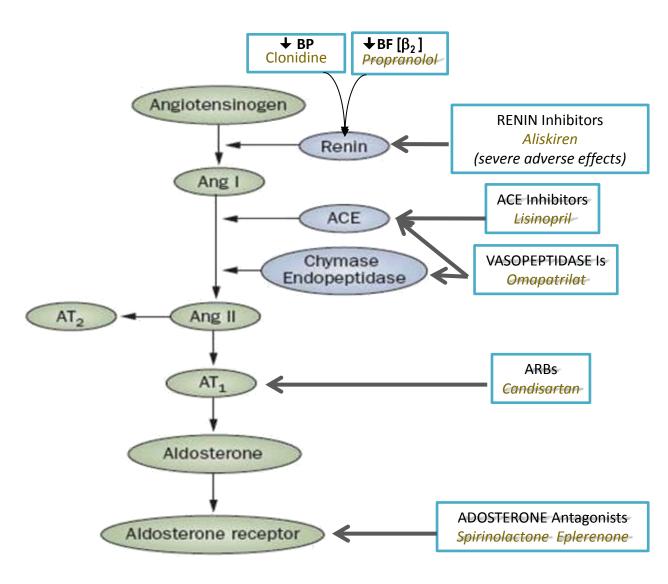
Angiotensin is a vasoconstrictor peptide

Synthesis

- Angiotensinogen is a plasma α -globulin synthesized from the liver.
- In the kidneys there's an enzyme called renin, it's secreted when there is <u>low blood pressure</u> and decrease in <u>renal blood flow</u>. its function is to convert **angiotensinogen** into **angiotensin 1**
- Angiotensin 1 has to be converted to angiotensin 2 by angiotensinconverting enzyme (ACE) that is released from the lungs.
- Angiotensin 2 binds to receptors in the blood vessels to cause vasoconstriction.

Angiotensin stimulates the release of Aldosterone hormone, released by the adrenal glands of the kidney, causes sodium retention in the kidney (sodium carries water) so the sodium and water increase the volume of the blood and increase the blood pressure.

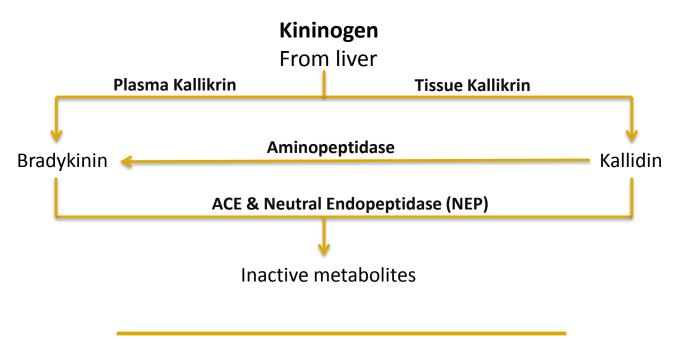
Termination of Action:


AgII acted upon by peptidases aminopeptidases (angiotensinase) to Ag III [less active] & then to fragmentation products

Drug Modulation

INHIBITION OF RAAS SYSTEM is beneficial in treatment of:

- 1. Hypertension (+ hypertrophy)
- 3. Diabetics (Protect the kidney)


ACEI: Angiotensin Converting Enzyme Inhibitor ARB: Angiotensin Receptor Blockers

Kinins

Bradykinin is a vasodilator peptides

Synthesis:

Action:

- (1)Vasodilatation
- Inflammation & Exudation
- 23 Pain (sensory nerves)
- Exocrine gland secretion 4

Drug Modulation

1. ↓ Action will↓ bradykinin mediated pain → NSAIDs (Non Steroidal Anti Inflammatory Drugs)

What is the difference between ACE and ARB?

ACEI: Inhibit activation of AgI to AGII + decrease degradation of bradykinin

ARB: Block the action of AgII on AT1 in VSMCs that is causing vasoconstriction so the AgII will act on non-blocked AT2 on endothelial cells causing vasodilatation

THANK YOU FOR CHECKING OUR WORK THE PHARMACOLOGY TEAM

عبدالرحمن السياري خالد الزهراني عبدالله الجنيدل أحمد المصعبي مهند الزيد عبدالرحمن الشمري معاذ باعشن عبدالعزبز الشعلان

مريم سعيدان كيان كعكى ساره الخليفه نورة الطويل رنيم الدبيخي اسرار باطرفي منيرة الحسن ديمه الراجحي كوثر الموسى نوف العبدالكريم هديل الغرير لمي الزامل 👘 ريم العقيل رفان هاشم سارا الحسين ديمة الفارس نوف الرشيد ياسمين الفارسي نورة العقيل

For any correction, suggestion or any useful information do not hesitate to contact us: Pharmacology.med435@gmail.com

435

t us: Pharmacology.med4350