Protein structure

(Foundation Block)

Dr. Sumbul Fatma

Learning outcomes

- What are proteins?
- Structure of proteins:
 - Primary structure.
 - Secondary structure.
 - Tertiary structure.
 - Quaternary structure.
- Denaturation of proteins.
- Protein misfolding.

What are proteins?

- Proteins are large, complex molecules that play many critical roles in the body.
- They do most of the work in cells and are required for the structure, function, and regulation of the body's tissues and organs.
- Proteins are made up of hundreds or thousands of smaller units called amino acids, which are attached to one another in long chains.

What are proteins?

- There are mainly 20 different types of amino acids that can be combined to make a protein.
- The sequence of amino acids determines each protein's unique three-dimensional (3D) structure and its specific function.
- Proteins can be described according to their large range of functions in the body e.g. antibody, enzyme, messenger, structural component and transport/storage.

Primary structure

• It is the linear sequence of amino acids.

- Covalent bonds in the primary structure of protein:
 - Peptide bond.
 - Disulfide bond (if any).

- Each amino acid in a chain makes two peptide bonds.
- The amino acids at the two ends of a chain make only one peptide bond.
- The amino acid with a free amino group is called amino terminus or NH₂-terminus.
- The amino acid with a free carboxylic group is called carboxyl terminus or COOH-terminus.

Peptides

- Amino acids can be polymerized to form chains:
 - Two amino acids \rightarrow dipeptide \rightarrow one peptide bond.
 - Three amino acids \rightarrow tripeptide \rightarrow two peptide bonds.
 - Four amino acids \rightarrow tetrapeptide \rightarrow three peptide bonds.
 - Few (2-20 amino acids) → oligopeptide.
 - More (>20 amino acids) → polypeptide.

- DNA sequencing.
- Direct amino acids sequencing.

How to determine the primary structure sequence?

- It is regular arrangements of amino acids that are located near to each other in the linear sequence.
- Excluding the conformations (3D arrangements) of its side chains.
- α -helix, β -sheet and β -bend are examples of secondary structures frequently found in proteins.

Ball-and-stick model of a portion of the α-helical secondary structure of a protein molecule

This ribbon model shows the general arrangement of atoms in a portion of the α-helical secondary structure of a protein molecule.

The two models superimposed

• α-helix:

- It is a right-handed spiral, in which side chains of amino acids extended outward.
- Hydrogen bonds: Stabilize the α-helix.
 - form between the peptide bond carbonyl oxygen and amide hydrogen.
- Amino acids per turn: Each turn contains 3.6 amino acids.
- Amino acids that disrupt an α-helix:
 - Proline \rightarrow imino group, interferes with the smooth helical structure.
 - Glutamate, aspartate, histidine, lysine or arginine \rightarrow form ionic bonds.
 - Bulky side chain, such as tryptophan.
 - Branched amino acids at the β -carbon, such as valine or isoleucine.

- **β-sheet** (Composition of a β-sheet)
 - Two or more polypeptide chains make hydrogen bonding with each other.
 - Also called pleated sheets because they appear as folded structures with edges.

• **β-sheet** (Antiparallel and parallel sheets)

Hydrogen bonds in parallel direction is less stable than in antiparallel direction

- Other secondary structure examples:
 - <u>β-bends (reverse turns):</u>
 - Reverse the direction of a polypeptide chain.
 - Usually found on the surface of the molecule and often include charged residues.
 - The name comes because they often connect successive strands of antiparallel β-sheets.
 - β-bends are generally composed of four amino acid residues, proline or glycine are frequently found in β-bends.
 - <u>Nonrepetitive secondary structure:</u>

e.g. loop or coil conformation.

- Other secondary structure examples:
 - Supersecondary structures (motifs):
 - A combination of secondary structural elements.

α α motif: two α helices together
β α β motif: a helix connects two β sheets
β hairpin: reverse turns connect antiparallel β sheets
β barrels: rolls of β sheets

- It is the three-dimensional (3D) structure of an entire polypeptide chain including side chains.
- The fundamental functional and 3D structural units of a polypeptide known as domains, >200 amino acids fold into two or more clusters.
- The core of a domain is built from combinations of supersecondary structural elements (motifs) and their side chains.
- Domains can be combined to form tertiary structure.

- Interactions stabilizing tertiary structure:
 - Disulfide bonds.
 - Hydrophobic interactions.
 - Hydrogen bonds.
 - Ionic interactions.

• Protein folding:

- Role of chaperons in protein folding:
 - Chaperons are a specialized group of proteins, required for the proper folding of many species of proteins.
 - They also known as "heat shock" proteins.
 - They interact with polypeptide at various stages during the folding process.

Quaternary structure

- Some proteins contain two or more polypeptide chains that may be structurally **identical** or totally **unrelated**.
- Each chain forms a 3D structure called subunit.
- According to the number of subunits: dimeric, trimeric, ... or multimeric.
- Subunits may either function independently of each other, or work cooperatively, e.g. **hemoglobin**.

Hemoglobin

- Hemoglobin is a globular protein.
- A multisubunit protein is called oligomer.
- Composed of $\alpha_2 \beta_2$ subunits (4 subunits).
- Two same subunits are called protomers.

Denaturation of proteins

- It results in the unfolding and disorganization of the protein's secondary and tertiary structures.
- Denaturating agents include:
 - Heat.
 - Organic solvents.
 - Mechanical mixing.
 - Strong acids or bases.
 - Detergents.
 - Ions of heavy metals (e.g. lead and mercury).
- Most proteins, once denatured, remain permanently disordered.
- Denatured proteins are often insoluble and, therefore, precipitate from solution.

Protein misfolding

- Every protein must fold to achieve its normal conformation and function.
- Abnormal folding of proteins leads to a number of diseases in humans.

Protein misfolding

• Alzheimer's disease:

- β amyloid protein is a misfolded protein.
- It forms fibrous deposits or plaques in the brains of Alzheimer's patients.
- Creutzfeldt-Jacob or prion disease:
 - Prion protein is present in normal brain tissue.
 - In diseased brains, the same protein is misfolded.
 - It, therefore, forms insoluble fibrous aggregates that damage brain cells.

Reference

Lippincott's Illustrated reviews: Biochemistry 4th edition – unit
 2.