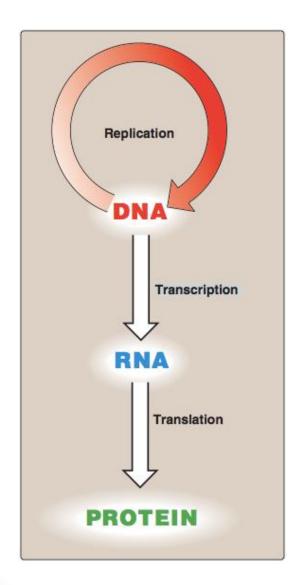
# Molecular biology (1)


(Foundation Block)

Dr. Sumbul Fatma

## Learning outcomes

- To learn the central dogma of molecular biology.
- To have an understanding of the composition, types and structure of DNA and RNA.
- To have an idea about the organization of DNA in the chromosome and the role of histone proteins.

## The central dogma of Molecular Biology



A portion of **DNA**, called a **gene**, is transcribed into **RNA**.

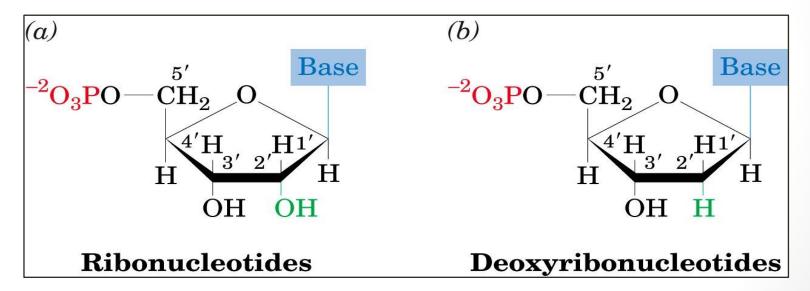
RNA is translated into proteins.

Human genome contains about 35,000 genes

### Nucleic acids

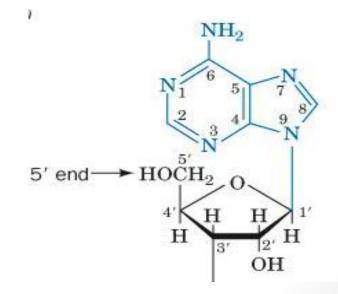
• Required for the storage and expression of genetic information.

- Two types:
  - DNA (Deoxyribonucleic acid).
  - RNA (Ribonucleic acid).
- Building blocks of nucleic acids are nuclueoside triphosphates (nucleotides).

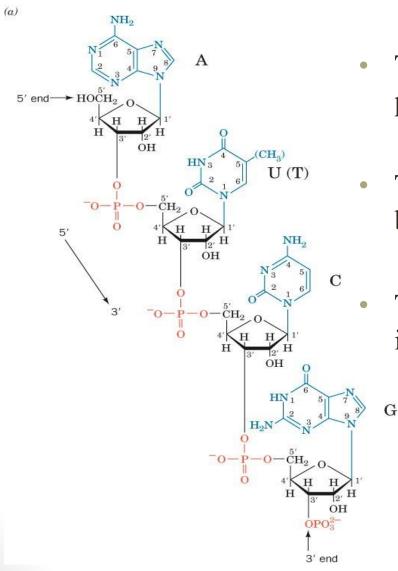

#### **Nucleotides**

- Nucleotides are composed of:
  - 1. Nitrogenous base:
    - Purines: Adenine (A) and Guanine (G)
    - <u>Pyrimidines:</u> Cytosine (C), Thymine (T) and Uracil (U).

| Base<br>Formula                                                                      | Base $(X = H)$      | Nucleoside $(X = ribose^a)$ | Nucleotide <sup>b</sup> $(X = ribose phosphate^a)$ |
|--------------------------------------------------------------------------------------|---------------------|-----------------------------|----------------------------------------------------|
| NH <sub>2</sub>                                                                      | Adenine<br>Ade<br>A | Adenosine<br>Ado<br>A       | Adenylic acid Adenosine monophosphate AMP          |
| $H \longrightarrow N \longrightarrow N$ $2N \longrightarrow N \longrightarrow N$ $X$ | Guanine             | Guanosine                   | Guanylic acid                                      |
|                                                                                      | Gua                 | Guo                         | Guanosine monophosphate                            |
|                                                                                      | G                   | G                           | GMP                                                |
| NH <sub>2</sub>                                                                      | Cytosine            | Cytidine                    | Cytidylic acid                                     |
|                                                                                      | Cyt                 | Cyd                         | Cytidine monophosphate                             |
|                                                                                      | C                   | C                           | CMP                                                |
| H N N                                                                                | Uracil              | Uridine                     | Uridylic acid                                      |
|                                                                                      | Ura                 | Urd                         | Uridine monophosphate                              |
|                                                                                      | U                   | U                           | UMP                                                |
| H CH <sub>3</sub>                                                                    | Thymine             | Deoxythymidine              | Deoxythymidylic acid                               |
|                                                                                      | Thy                 | dThd                        | Deoxythymidine monophosphate                       |
|                                                                                      | T                   | dT                          | dTMP                                               |


#### 2. Sugar: pentose with 5 carbon ring:

- a) Ribose (with -OH at  $C_2$ ).
- b) Deoxyribose.




#### 3. Phosphate groups.

- The sugar carbon numbers are primed (1' 2' 3' etc.), while the nitrogenous base atoms are unprimed.
- The nitrogenous base is bonded to C<sub>1</sub>' of sugar.
- The PO<sub>4</sub> group is bonded to C<sub>3</sub>' or C<sub>5</sub>' of sugar.



## Chemical structure of DNA & RNA



- The PO<sub>4</sub> bridges the 3' and 5' positions of ribose sugar.
- The PO<sub>4</sub> and sugar bonding is the backbone of DNA structure.
  - The linkage between the nucleotides is called **phosphodiester bond**

#### Function of nucleotides

- Polymers of nucleotides (as DNA or RNA) store and transfer genetic information.
- Free nucleotides and their derivatives perform various metabolic functions not related to genetic information.
- Other nucleotides: FAD, NAD, CoA.

### The double helix DNA

• The structure of DNA was first determined by James Watson and Francis Crick in 1953.

• Commonly known as Watson-Crick structure.

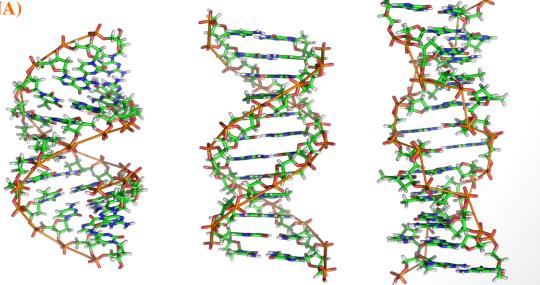
#### Features of Watson-Crick DNA structure

- 1 Two polynucleotide chains wind around a common axis to form a double helix.
- 1 The two strands are anti-parallel (run in opposite direction).
- 1 Each strand is a right-handed helix.
- 2 The nitrogenous bases are in the center of the double helix and the sugar-phosphate chains are on the sides.

- 5 The surface of the double helix contains 2 grooves: the major and minor grooves.
- 5 Each base is hydrogen bonded to a base in the opposite strand to form a base pair (A-T and G-C), known as complementary base pairing.
- 5 The helix has 10 base pairs (bp) per turn.

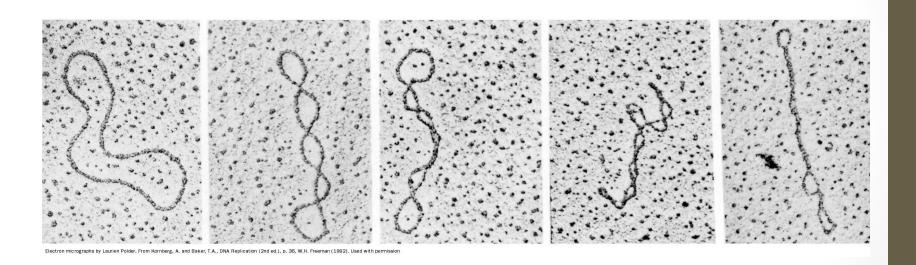
## Watson-Crick base pairs

Adenine (A) = Thymine (T)


Guanine (G)  $\equiv$  Cytosine (C)

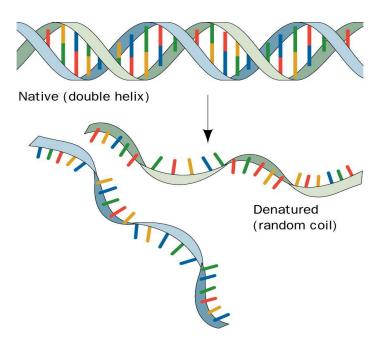
In RNA, Thymine is replaced by Uracil (U)

# Types of DNA structure


|                             | A-DNA                                | B-DNA*                        | Z-DNA                                                      |
|-----------------------------|--------------------------------------|-------------------------------|------------------------------------------------------------|
| Direction                   | Right-handed                         | Right-handed                  | Left-handed                                                |
| Helix length                | Short                                | Elongated                     | More elongated                                             |
| Major groove                | Deep and narrow                      | Wide                          | Not real groove                                            |
| Minor groove                | Wide                                 | Narrow                        | Narrow                                                     |
| Placement of bp             | Displaced away from the helical axis | Centred over the helical axis | Zig-zag pattern (nearly perpendicular to the helical axis) |
| bp per turn                 | 11                                   | 10                            | 12                                                         |
| Conformation of deoxyribose | $C_3$                                | $C_2$                         | $G(C_2); C(C_3)$                                           |

<sup>\*</sup> Watson-Crick model (B-DNA)

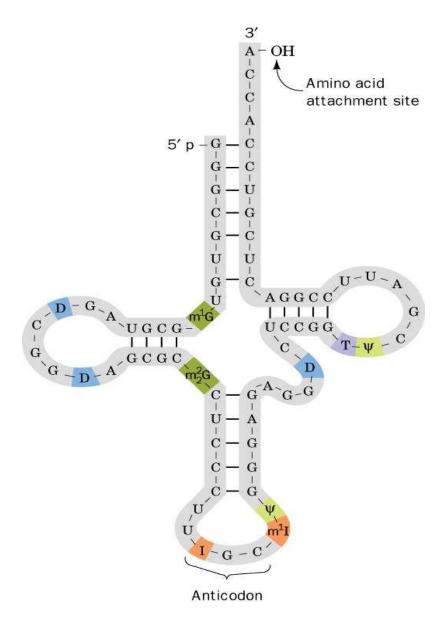



## DNA supercoiling

• The chromosomes of many bacteria and viruses contain circular DNA which is supercoiled.



## Melting temperature (MT)


- The temperature at which the double-stranded DNA is separated into two single strands.
- MT of DNA depends on nitrogenous base content (A-T and G-C).
   G-C has 3 hydrogen bonds → stronger than A-T.



## RNA (Types and function)

RNA is a single-stranded polymer of ribonucleotides.

- Types of RNA:
  - $\underline{mRNA}$  (messenger RNA)  $\rightarrow$  Function: Transcription process (from DNA to mRNA).
  - <u>tRNA (transfer RNA)</u> → Function: Recognition and transferring. It recognizes amino acids' codons and transfers the selected amino acids to the growing protein chain.
  - <u>rRNA (ribosomal RNA)</u> → Function: Site of protein synthesis (factory).

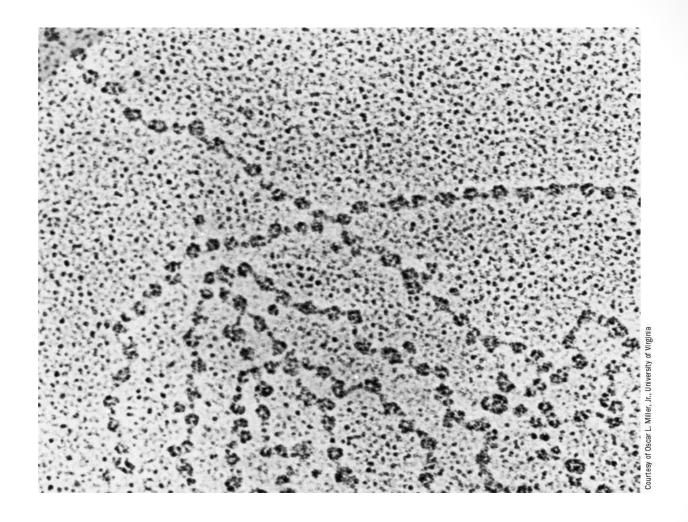


Structure of a tRNA

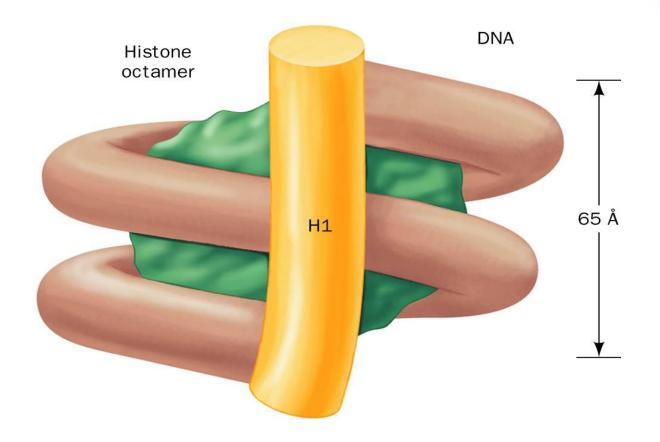
## How DNA is organized in a chromosome?

- The human genome contains 3.5 billion base pairs and more than 95% is non-coding or "junk" DNA.
- The DNA from single 23 human chromosomes have a length of 1 meter.
- How such large quantities of DNA are packed into a single cell?
- Each chromosome is a complex of a single linear DNA molecule and protein called **chromatin**.
- 50% of chromatin consists of proteins called **histones**.

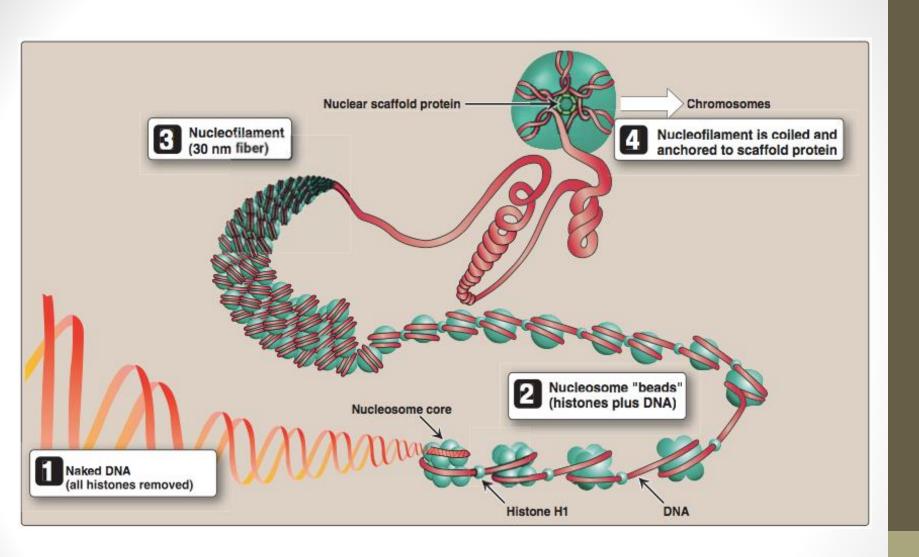
### Histones


• Five major types of histones:

H1 H2A H2B H3 H4


- Histones have positively charged amino acids (arginine and lysine).
- These proteins bind to negatively charged PO<sub>4</sub> groups of DNA to stabilize the chromatin structure.

#### **Nucleosomes**


- Nucleosomes are particles consisting of DNA and histones connected by thin strands of naked DNA (like beads on a string; Sibhah in Arabic).
- Nucleosomes consist of the histone octamer (eight) and DNA (H2A)<sub>2</sub>(H2B)<sub>2</sub>(H3)<sub>2</sub>(H4)<sub>2</sub>
- H1 binds to 2 complete helical turns of DNA.



Electron micrograph of chromatin showing nucleosomes



A nucleosome showing interaction of histones with the DNA



Chromatin filament with nucleosomes and naked DNA

## Reference

- Lippincott's Illustrated reviews: Biochemistry 4<sup>th</sup> edition unit 6.(pages 395-398 and 409-410)
- Biochemistry by Voet and Voet 3<sup>rd</sup> edition.
- http://www.tulane.edu/~biochem/nolan/lectures/rna/bzcomp2.htm
- <a href="http://biowiki.ucdavis.edu/Genetics/Unit\_I%3A\_Genes">http://biowiki.ucdavis.edu/Genetics/Unit\_I%3A\_Genes</a>, <a href="Nucleic\_Acids">Nucleic\_Acids</a>, <a href="Genomes">Genomes</a></a>
  <a href="mailto:acids/B-Form">and\_Chromosomes/Chapter 2</a>. <a href="Structures">Structures</a> of <a href="mailto:nucleic\_acids/B-Form">nucleic\_acids/B-Form</a>, <a href="mailto:A-Form">A-Form</a>, <a href="mailto:Z-Form">Z-Form</a>\_ of <a href="mailto:DNA">DNA</a>