

Major Metabolic Pathways of Glucose

Amr S. Moustafa, MD, PhD.

Clinical Chemistry Unit, Pathology Dept. College of Medicine, KSU

Metabolic Pathway

- Definition
- Site:

Cellular (tissue) and Subcellular Reactions Rate-limiting enzyme(s) Regulatory mechanism(s): Rapid, short-term: Allosteric **Covalent modification Slow, long-term: Induction/repression**

Metabolic Pathways of Glucose: Catabolic and Anabolic

Catabolic cycles Glycolysis (Mainly) Krebs (Mainly) Glycogenolysis HMP Anabolic cycles Gluconeogenesis

Glycogenesis

Glycogenesis and Glycogenolysis

Glycogenesis: Synthesis of glycogen from glucose Mainly liver and muscle, Cytosol

Glycogenolysis Degradation of glycogen into glucose Mainly liver and muscle, Cytosol

Hexose Monophosphate Pathway (HMP) or Pentose Phosphate Pathway (PPP)

Important source for NADPH Reductive syntheses

Source for metabolically active ribose Production of nucleotides: For nucleic acids For co-enzymes

Glucose Transport

Na⁺-Monosaccharide Cotransporter:

Against concentration gradient Energy dependent Carrier-mediated Coupled to Na⁺ transport Small intestine, renal tubules & choroid plexus

Na⁺-Independent Facilitated Diffusion: With concentration gradient Energy Independent Glucose Transporters (GLUT 1-14)

Glucose Transport: Facilitated Diffusion

Glucose Transporters

 Tissue-specific expression pattern **GLUT-1 RBCs and brain GLUT-2** Liver, kidney & pancreas **GLUT-3** Neurons **GLUT-4 Adipose tissue & skeletal** muscle **GLUT-5 Small intestine & testes GLUT-7** Liver (ER-membrane) • Functions: GLUT-1, 3 & 4 **Glucose uptake from blood GLUT-2 Blood & cells (either direction) GLUT-5 Fructose transport**

Glycolysis: Objectives

- Major oxidative pathway of glucose
- > The main reactions of glycolytic pathway
- The rate-limiting enzymes/Regulation
- > ATP production (aerobic/anaerobic)
- Pyruvate kinase deficiency hemolytic anemia

Glycolysis: An Overview

- Glycolysis, the major pathway for glucose oxidation, occurs in the cytosol of all cells.
- It is unique, in that it can function either aerobically or anaerobically, depending on the availability of oxygen and intact mitochondria.
- It allows tissues to survive in presence or absence of oxygen, e.g., skeletal muscle.
- RBCs, which lack mitochondria, are completely reliant on glucose as their metabolic fuel, and metabolizes it by anaerobic glycolysis.

Aerobic Vs Anaerobic Glycolysis

Aerobic Glycolysis-1

Aerobic Glycolysis-2

Aerobic Glycolysis: 3-5

Aerobic Glycolysis: 6 -10

Aerobic Glycolysis-1

Hexokinase: Most tissues Glucokinase: Hepatocytes

PFK-1: Regulation

(1) Allosteric Regulation Inhibited: ATP & citrate Stimulated: AMP & F2,6 bis(P)

(2) Induction/Repression Induced by insulin Repressed by glucagon

Aldolase and Triose Isomerase

Glyceraldehyde 3-Phosphate Dehydrogenase

Two NADH are produced: For each NADH, 3 ATP will be produced by ETC in the mitochondria i.e., 6 ATP are produced by this reaction of aerobic glycolysis

Pyruvate Kinase

Substrate-level phosphorylation Vs. Oxidative phosphorylation

- **Phosphorylation** is the metabolic reaction of introducing a phosphate group into an organic molecule.
- Oxidative phosphorylation: The formation of high-energy phosphate bonds by phosphorylation of ADP to ATP <u>coupled to</u> the transfer of electrons from reduced coenzymes to molecular oxygen via the electron transport chain (ETC); it occurs in the mitochondria.
- Substrate-level phosphorylation: The formation of highenergy phosphate bonds by phosphorylation of ADP to ATP (or GDP to GTP) <u>coupled to</u> cleavage of a highenergy metabolic intermediate (substrate). It may occur in cytosol or mitochondria

Regulation: Pyruvate Kinase

Allosteric Regulation: Feed-forward by F1,6 bis @

Covalent Modification: Active pyruvate kinase: Dephospho-form

Induction/Repression: Induced by insulin Repressed by glucagon

Pyruvate Kinase Deficiency Hemolytic Anemia

Summary: Regulation of Glycolysis

Regulatory Enzymes (Irreversible reactions): Glucokinase/hexokinase PFK-1 Pyruvate kinase

Regulatory Mechanisms: Rapid, short-term: Allosteric Covalent modifications Slow, long-term: Induction/repression Apply the above mechanisms for each enzyme where applicable

Aerobic Glycolysis: ATP Production

ATP Consumed:

ATP Produced: Substrate-level Oxidative-level Total

2 X 2 = 4 ATP 2 X 3 = 6 ATP 10 ATP10 - 2 = 8 ATP

2

ATP

Net:

Take Home Message

- Glycolysis is the major oxidative pathway for glucose
- Glycolysis is employed by all tissues
- Glycolysis is a tightly-regulated pathway
- > PFK-1 is the rate-limiting regulatory enzyme

Take Home Message

- Glycolysis is mainly a catabolic pathway for ATP production, But
- > It has some anabolic features (amphibolic)
- Pyruvate kinase deficiency in RBCs results in hemolytic anemia

THANK YOU