

Lipid Compounds of Physiological Significance

- Functions of lipid compounds
- Clinical problems
- Lipid compounds of physiological importance
- Complex lipids: Phospholipids, glycolipids and lipoproteins

Functions of lipid compounds

- Major energy source for the body
- Structural component of cell membranes
- Important regulatory molecules:

e.g., Fat-soluble vitamins Steroid hormones Prostaglandins Signaling molecules: Inositol triphosphate (IP3)

Lipids and Related Clinical Problems

• Obesity

• Atherosclerosis and hypertension

• Coronary heart diseases

Lipid Compounds

- Heterogeneous group
- Relatively water-insoluble (? Exception)

• Soluble in non-polar solvents

A. Simple Lipids: Fatty acids Ketone bodies Triacylglycerol Cholesterol

TRIACYLGLYCEROL PHOSPHOLIPID сн₂-0-Р-0-Сн₂Сн₂⁺N(Сн₃)₃ STEROID **Lipid Compounds:** HO **Heterogeneous Group** GLYCOLIPID C=OHN OH Carbohydrate

FATTY ACIDS

B. Complex Lipids: Phospholipids Lipoproteins Glycolipids

Fatty Acids (FA)

CH ₃ (CH ₂) _n	COO-
Hydrophobic hydrocarbon chain	Hydrophilic carboxyl group (ionized at pH 7)

Amphipathic: Both hydrophobic & hydrophilic parts

Fatty Acids

1. Chain length:
Short-chain and Medium-Chain
Long-ChainLong-Chain
Very long-chaine.g., Palmitic acid 16:0
e.g., Nervonic acid 24:1

2. Degree of saturation: Saturated: No double bonds Unsaturated: Mono- or poly-unsaturated Cis- or trans-form

3. Essential fatty acids

four to ten carbons are found in significant quantities in milk.			
	Structural lipids and triacylglycerols contain primarily fatty acids of at least sixteen carbons.		
1	COMMON NAME	STRUCTURE	
	Formic acid	1 //	
	Acetic acid	2:0	
	Propionic acid	3:0	
7	Butyric acid	4:0 //	
	Capric acid	10:0	
	Palmitic acid	16:0	
	Palmitoleic acid	16:1(9)	
	Stearic acid	18:0	
	Oleic acid	18:1(9)	
71	J Linoleic acid	18:2(9,12)	
1	Linolenic acid	18:3(9,12,15)	
1	Arachidonic acid	20:4 (5, 8, 11, 14)	
Lignoceric acid		24:0	
	Nervonic acid	24:1(15)	
V	Precursor	of prostaglandins	
Б	Eccontial fatty acide		

essential fatty acids

. . .

Essential Fatty Acids

1. Linoleic acid, 18:2

2. Linolenic acid, 18:3

The precursor of prostaglandins, arachidonic acid 20:4, is also considered essential fatty acid if linoleic acid is deficient from diet

Plasma Fatty Acids

Esterified form (~90%): In triacylglycerol, cholesterol ester, phospholipids (as part of lipoproteins)

Free-form (unesterified): Transported in association with albumin

Triacylglycerols

• Storage form in adipose tissue

• ~ 90% of dietary lipids

Glyscerol plus 3 fatty acids

• **Blood transport:** Chylomicrons and VLDL

Phospholipids

A. Glycerophospholipids Glycerol-containing phospholipids 1. Phosphatidylcholine (Lecithin) e.g., Surfactant (Dipalmitoylecithin) 2. Phosphatidyl inositol (signaling molecule)

B. Sphingo-phospholipids: Sphingosine-containing phospholipids: e.g., sphingomyelin (Myelin sheath) (To be discussed with CNS Block)

Phospholipids: A. Glycerophospholipids

Parent Compound Phosphatidic acid

Members: 1. Phosphatidylcholine (Lecithin) e.g., Surfactant (Dipalmitoyl lecithin)

Cholesterol: Structure

Overview and Functions

- > Major Sterol of animal tissues
- Component of cell membranes
- Precursor for:
 - **Bile acids & salts**
 - Vitamin D
 - **Steroid hormones:**
 - Mineralocorticoids e.g., Aldosterone Glucocorticoids, e.g., Cortisol Sex hormones, e.g., Testosterone Estrogen & progesterone
- Hypercholesterolemia: Atherosclerosis & CAD

Lipoprotein Structure

Protein part: Apoproteins or apolipoproteins Abbreviations: Apo-A, B, C Functions: Structural and transport function Enzymatic function Ligands for receptors

Lipid part:

- According to the type of lipoproteins
- Different lipid components in various combinations

Chylomicron

Chylomicrons

Composition of Lipoproteins

Very low density Lipoprotein (VLDL)

Low density Lipoprotein (LDL)

High density Lipoprotein (HDL)

Ultracentrifugation of Lipoproteins

Plasma Lipoproteins

Triacylglycerol transport:
Chylomicrons:TG of dietary origin
TG of endogenous synthesis

Cholesterol transport:LDL:Mainly free cholesterolHDL:Mainly esterified cholesterol

Take Home Message

Lipids are heterogeneous group of compounds **Lipids are relatively water-insoluble** Simple lipids: FA, TG, Ketone bodies, Cholesterol **Complex lipids:** e.g., Phospholipids, Lipoproteins Lipids have important physiological functions Lipid disorders are the basis for common human diseases, namely obesity and atherosclerosis