

BLOOD GROUPS AND BLOOD TRANSFUSION

Prof. Shahid Habib

OBJECTIVES

At the end of this lecture you should be able to:

- **1.Describe ABO blood groups types.**
- 2.Recognize Agglutinin in plasma.
- 3.Describe genetic inheritance of Blood groups.
- 4. Recognize transfusion reactions.
- **5.Describe Rhesus blood groups.**
- 6.Describe causes of hemolytic disease of the newborn.

BLOOD GROUPS

- Discovered ABO Blood group system in 1901
- Discovered Rh factor in 1930 along with Alexander S. Wiener
- Noble prize in Physiology or Medicine in 1930

KARL LANDSTEINER (1886-1943)

Austrian scientist

BLOOD GROUP SYSTEMS

- Blood Groups are determined by: Antigens (glycoproteins, complex oligosaccharides that differ in their terminal sugar) present on the surface of RBCs
- About 20 blood group systems are known
 (Eg. ABO System, Rh-System MNS System, Kell System,
 Lewis System, Duffy, Lutheran, KIDD)
- Two are common
 - ABO blood group system
 - Rh (Rhesus) blood group system

red blood cells.

The ABO system:

- Depends on whether the red cells contain one, both or neither of the two blood antigens: A and B
- Four main ABO groups: A, B, AB, O

Locus of alleles responsible of ABO system is on long arm of chromosome 9 while Rh locus is on chromosome 1

Rhesus (Rh) Blood Group is Determined by:

- Presence or absence of the Rhesus antigen
 (D) on the surface of RBC:
 - Presence of D (individual is Rh+ve) [85%]
 - Absence of D (individual is Rh–ve) [15%]
- Rhesus antigens:
 - Dd, Cc, Ee
 - Clinically most important is D

Landsteiner and Weiner in 1940 discovered other antigens in human R.B.Cs and named rhesus antigens or Rh-antigen because the same antigens are present in Rhesus monkey.

Antibodies in ABO & Rh Systems

- Anti-A & Anti-B are: naturally occurring antibodies.
- Not present at birth, appear 8 weeks after birth.
- Triggered by A & B antigens in food and bacteria.
- Anti-D antibody (agglutinin):
- Is not naturally-occurring and are Acquired by:
 - Transfusion of Rh-ve individual with Rh+ve blood.
 - Rh-ve pregnancy with Rh+ve faetus.

Landsteiner Law (1900) If an agglutinogen is present on the RBC of an individual, the corresponding agglutinin must be absent in the plasma of that individual and vice-versa. This law is only applicable to ABO blood grouping system.

TABLE 31–3 Summary of ABO system.

Blood Type	Agglutinins in Plasma	Frequency in United States %	Plasma Agglutinates Red Cells of Type:
0	Anti-A, anti-B	45	A, B, AB
А	Anti-B	41	B, AB
В	Anti-A	10	A, AB
AB	None	4	None

Antibodies in Serum are also known as AGGLUTININS

Inheritence of ABO system

- The ABO gene locus is located on the chromosome 9
- A and B blood groups are dominant over the O blood group
- A and B group genes are co-dominant
- Each person has two copies of genes coding for their ABO blood group (one maternal and one paternal in origin)

AUTOSOMAL CHROMOSOME

A

The alleles for Blood group are in the same place on the chromosome 9. However the genes have a different code giving the different blood group

one alleles from Mother and one from Father.

GENETIC DETERMINATION OF AGGLUTINOGENS

Parent	Α	B	0
Allele			
Α	AA	AB	AO
В	AB	BB	BO
0	AO	BO	00

GENETIC DETERMINATION OF AGGLUTINOGENS

Blood Group	Antigens on RBCs	Antibodies in Serum	Genotype s
A	A	Anti-B	AA or AO
В	B	Anti-A	BB or BO
AB	A and B	Neither	AB
0	Neither	Anti-A and Anti- B	00

Antibodies in Serum are also known as AGGLUTININS

AGGLUTININS / ANTIBODIES

 Immunoglobulins Are proteins which appear in the plasma or body fluids in response to administration of antigens
 IqM & IqG

anti-A or anti-B antibodies are of the IgM class (large molecules) and these do not cross the placenta Rh antibodies are IgG type & can cross placenta

TITER OF ANTI-A& B AGGLUTININS AT DIFFERENT AGES

Two to 8 months after birth, an infant begins to produce agglutinins.

A maximum titer is usually reached at 8 to 10 years of age, and this gradually declines throughout the remaining years of life.

THE Rh IMMUNE RESPONSE

Formation of anti-Rh agglutinins

If Rh +ve blood transfused to

Rh-ve person

Anti-Rh agglutinins develop slowly (2-4 months) Once produced they persist for years & can produce serious reactions during 2nd transfusion

Blood group A

If you belong to the blood group A, you have A antigens on the surface of your RBCs and B antibodies in your blood plasma.

Blood group B

If you belong to the blood group B, you have B antigens on the surface of your RBCs and A antibodies in your blood plasma.

Blood group AB

If you belong to the blood group AB, you have both A and B antigens on the surface of your RBCs and no A or B antibodies at all in your blood plasma.

Blood group O

If you belong to the blood group O (null), you have neither A or B antigens on the surface of your RBCs but you have both A and B antibodies in your blood plasma.

BLOOD GROUP TYPES

(b)

BLOOD TYPING

Anti-D serum determines Rh+ and Rh-

Blue arrows indicate agglutination

McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Anti-A

Anti-B

Detremination of blood groups

Importance of blood groups

- In Blood transfusion
- In preventing hemolytic disease (Rh incompatibility)
- In paternity disputes
- In medicolegal cases
- In knowing susceptibility to disease

Group O- duodenal cancer Gropu A- Carcinoma of stomach, pancreas & salivary glands

Agglutination in transfusion reaction

- If a patient of blood group A transfused with blood of group B
- The anti-B in plasma will agglutinate the transfused group B cells:
- Outcome:
 - The clumped cells plug small blood vessels (kidney shut down).
 - Sometimes immediate hemolysis.

Agglutination in transfusion reaction

- If a person with blood group A transfused with blood of group B (contains anti-A in plasma)
- The anti-A in plasma of recipient blood group B will agglutinate the transfused cell (A)
- The clumped cells plug small blood vessels
- Sometimes causes immediate hemolysis

→Transfusion reaction

Rh incompatibilty between mother and fetus

- Mother is Rh-ve and first baby is Rh+ve:
- At delivery
 - Fetal Rh+ RBC cross to maternal blood
 - The mother will develop Anti-D after delivery.
 - First child escapes & is safe

If the mother was transfused before with Rh+ve blood before, first child will also be affected

Rh incompatibilty between mother and fetus

- Second fetus
 - If Rh+ve
 - Anti-D crosses placenta and destroys fetal Rh+ RBC

Outcome? Hemolytic Disease of the newborn

ERYTHROBLASTOSIS FETALIS / HEMOLYTIC DISEASE OF NEW BORN

- **1. Hemolytic anemia:**
 - If severe:
 - treated with exchange transfusion:
 - Replace baby blood with Rh-ve RBC (several times)
- 2. Hydrops fetalis (death in utero)

Prevention:

Injecting the mother with anti-D immediately after 1st childbirth Antenatal (during pregnancy) prophylaxis

Prophylaxis

- Anti-D injection is given I/M to the mother
- Prevalence of Disease
 - Ist Pregnancy ----- o%
 - 2nd Pregnancy ----- 3%
 - 3rd Pregnancy ----- 10%

Etiology

- Exposure of the mother to the fetal RBC antigens
- Production of antibodies against foreign antigens in maternal circulation
- Maternal resensitization in the subsequent pregnancy
- Free passage of antibodies through the placenta
- Fetal red cell hemolysis

Clinical Features

- Anemia
- Jaundice
- Hepatosplenomegaly
- Generalized edema
- Immature RBC in circulation
- Kernicterus

Diagnosis

- Rapidly rising Rh antibody level in the mother during pregnancy
- Amniotic fluid showing high levels of bilirubin
- +ve coombs test on fetal cord blood

Treatment

- Exchange transfusion
- Phototherapy

Drugs

DONORS AND RECIPIENTS

 People with blood group o are called "universal donors" and people with blood group AB are called "universal receivers."

If You Have	You Can Rece	íve		
0+	0+	0–		
0-	0-			
A+	A+	A–	0+	0–
A–	A–	0–		
B+	B+	B–	0+	0-
В-	B–	0–		
AB+	AB+	AB–	0+	0-
	A+	A–	B+	B-
AB-	AB-	0-	A–	В-

Blood tests before transfusion

1.Blood group type of patient (recipient)
2. Cross-matching

2. Cross-matching: donor cells + recipients (patient) serum

mixing of donor's cells with recipient's plasma

DONORS AND RECIPIENTS

Blood Group	Antigens	Antibodies	Can give Blood to	Can receive blood from
AB	A and B	None	AB	AB, A, B and O
A	A	B	A and AB	A and O
В	B	A	B and AB	B and O
0	None	A and B	AB, A, B and O	0

Complications of blood transfusion

- Immune reaction: Incompatible blood transfusion leading to immediate or delayed reaction, fever, haemolysis, allergic reaction
- Transmission of diseases; malaria, syphilis, viral hepatitis & Aids
- Iron overload due to multi-transfusion in case of sickle cell anemia and thalassemia.

TRANSFUSION REACTIONS

2 Types

- Immediate
 - Agglutination
 - Hemolysis
 - Fever
 - Allergic reaction
 - Acute renal shutdown
 - Renal vasoconstriction
 - Circulatory shock
 - Tubular blockage

- Delayed
 - Sensitization
 - Thrombo Phlebitis

BLOOD TRANSFUSION

Indications

- When blood is lost as a whole or as a result of haemorrhage or surgery
- Diseases
- Anemias

TESTS DONE BEFORE TRANSFUSION

- Blood grouping
 - ABO & Rh grouping of donor and recipient
 - Cross matching
 - Screening of Donor Plasma

THANKYOU

