(Foundation Block) Cell Membrane

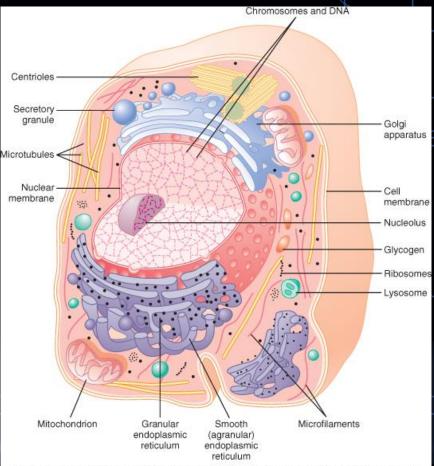
By Ahmad Ahmeda

aahmeda@ksu.edu.sa 0536313454

Learning Objectives:

- Describe the model of membrane structure and function
- Define permeability and list factors influencing permeability
- Identify and describe carried-mediated transport processes: Primary active transport, secondary active transport, facilitated diffusion.

Eukaryotic Cell Structure


The cell is basic unit of structure and function within the body
 (~100 trillion cells in body).

Comprises three principal parts;

i) Plasma (cell) membrane

ii) Cytoplasm & organelles

iii) Nucleus

[©] Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

3

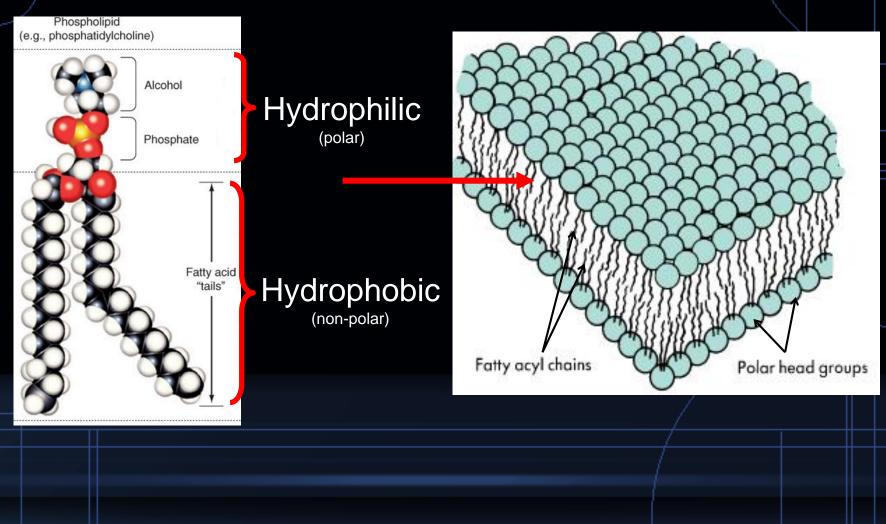
Cell membrane

- It covers the cell.
- It is a fluid and not solid.
- It is 7-10 nanometer thick.
- It is also referred to as the plasma membrane.
- Composition

Protein 55%

Carbohydrate 3%

Lipid 42%

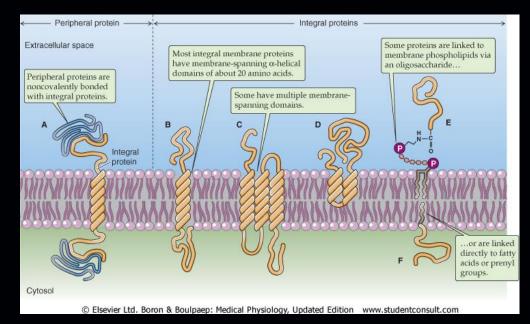

Phospholipids 25%

Chlosterol 13%

Glycolipid 4%

The Plasma Membrane

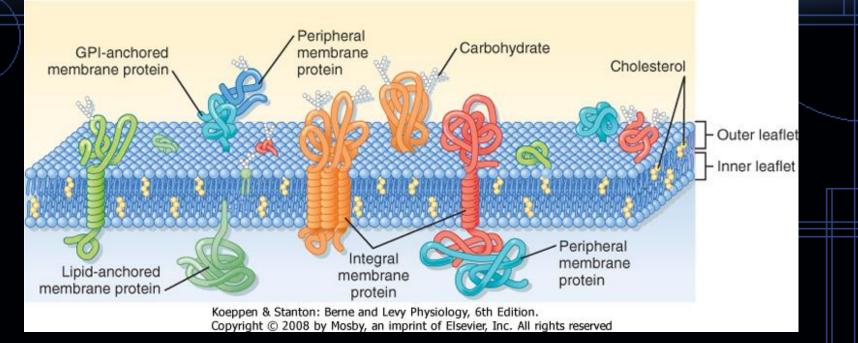
Main constituents of plasma membrane are phospholipids.


Cell membrane structure

Organized in a bilayer of phospholipid molecules

- Glycerol head (hydrophilic).
 Two fatty acid '' tails'' (hydrophobic).
- Heads (hydrophilic) facing ICF and ECF and tails (hydrophobic) face each other in the interior of the bilayer (Amphipathic)

Cell Membrane Proteins


Proteins integrated into phospholipid bilayer separated into 2 groups; i) **Peripheral** ii) **Integral** (intimately attached to PM)

1. INTEGRAL proteins span the membrane (Proteins provide structural <u>channels</u> or <u>pores</u>)

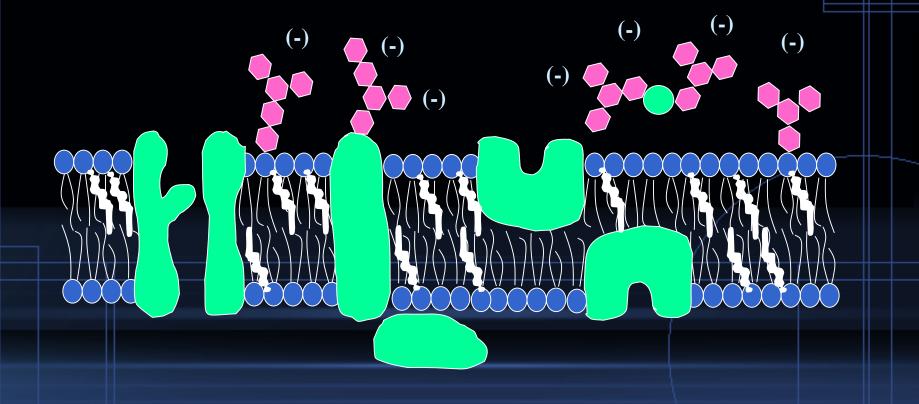
 PERIPHERAL proteins (carrier) can participate in intracellular signalling, present in one side, work as cell membrane receptor and cell surface antigens.

The cell membrane carbohydrates

- Glycoproteins (most of it)
- Glycolipids (1/10)
- Proteoglycans (mainly carbohydrate substance bound together by

protein)

-Glycocalyx (loose coat of carbohydrates)

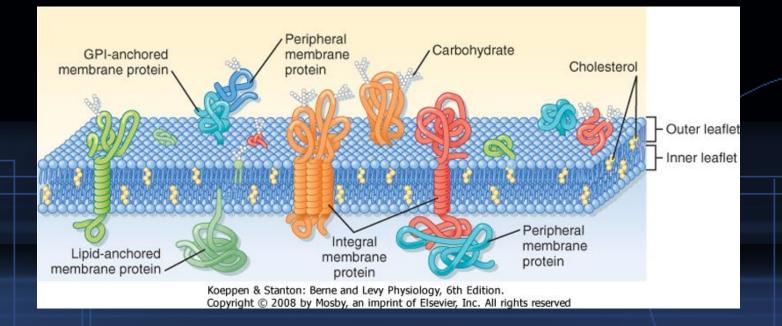

The cell membrane carbohydrates

- Function of carbohydrates:
- Attaches cell to each others.
- Act as receptors substances (help ligand to recognize its receptor)
- Some enter into immune reactions.
- Give most of cells overall –ve surface.

Cholesterol

present in membranes in varying amounts controls much of the fluidity of the membrane

increases membrane FLEXIBILITY and STABILITY


Transport through the cell membrane

Cell membrane is selectively permeable.

- Through the proteins.
 - water --soluble substances e.g. ions, glucose

Directly through the lipid bilayer.

- fat – soluble substance (O2, CO2, alcohol)

Solute Movement Across Plasma Membrane

For cell viability, nutrients must continually enter the cell and waste products must exit.

Four principal mechanisms:

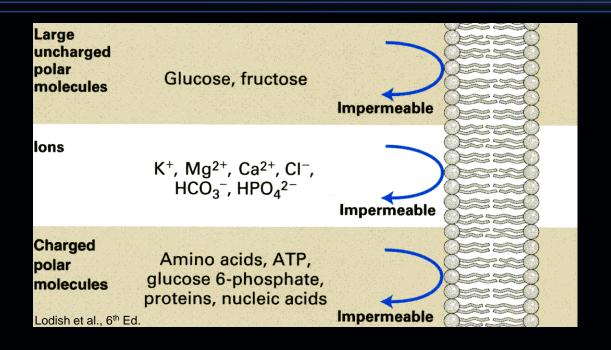
i) Simple Diffusion

ii) Facilitated Diffusion (+ Osmosis) Movement with a concentration gradient, e.g. high to low concentration, no metabolic energy required

iii) Active Transport

Movement <u>against</u> a concentration gradient, e.g. low to high concentration, <u>requires</u> metabolic energy (ATP)

iv) Bulk (Vesicular) Transport } Large quantity transport of molecules


Simple Diffusion

Small, uncharged substances cross the membrane by SIMPLE DIFFUSION (by dissolving in PM). *e.g.* gases, alcohol, steroids and general anaesthetics

Gases	CO ₂ , N ₂ , O ₂	Permeable	
Small uncharged polar molecules	Ethanol	Permeable	>
	H ₂ O		
	Water	Slightly permeable	

 Non carrier mediated transport down an electrochemical gradient

QUESTION: How do larger and / or lipid-insoluble substances (charged molecules, ions) cross the lipid bilayer?

They require transport (carrier) proteins - these are all INTEGRAL (TRANSMEMBRANE) PROTEINS

Responsible for allowing transport of the majority of molecules (and all ions) across biomembranes (in & out).

Rate of diffusion <u>far higher</u> than simple diffusion.

Rate of simple diffusion depends

on:

- 1- Amount of substance available
- 2- The number and sizes of opening in the membrane for the substance (selective gating system)
- 3- Chemical concentration difference
- 4- Electrical potential difference
- 5- Molecular size of the substance
- 6- Lipid solubility
- 7- Temperature

Protein-Mediated Transport

Two types of protein-mediated transport;

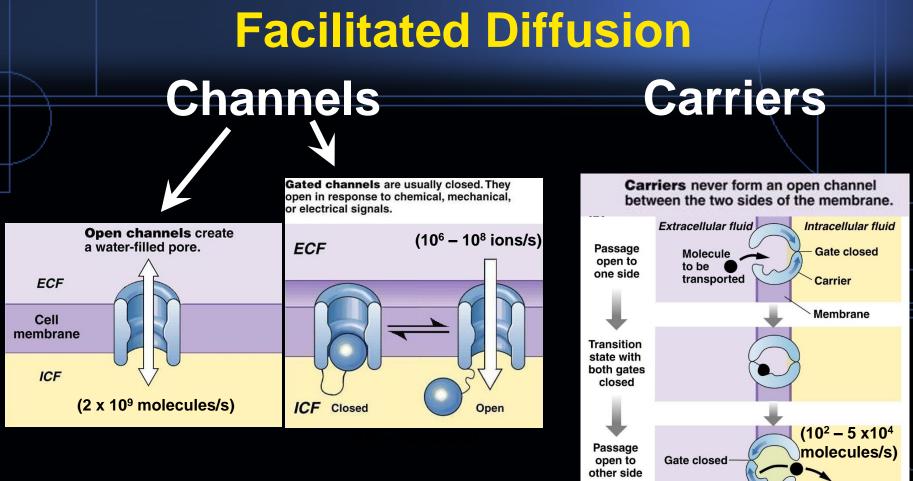
- i) Facilitated Diffusion &
- ii) Active Transport

Facilitated Diffusion

- Facilitated diffusion is a PASSIVE process *i.e.*, movement is <u>DOWN</u> a concentration gradient and does <u>NOT</u> require ATP.
- There are two principal types of membrane proteins that mediate facilitated diffusion;

GATED CHANNELS

1) Channel Proteins <

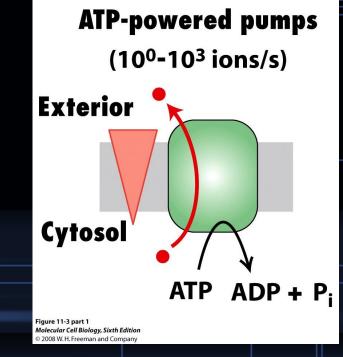

Ion channels (e.g., Na⁺, K⁺, Cl⁻ & Ca²⁺)

OPEN CHANNELS

Aquaporins (water & small solutes)

2) Carrier Proteins

UNIPORTER\$ Glucose & amino acids


Adapted from Silverthorn, 4th Ed.

Diffusion continues until equilibrium is reached (or otherwise terminated)

Processes are <u>SPECIFIC</u>, <u>SATURABLE</u> and <u>COMPETITIVE</u>. QUESTION: How do larger and / or lipid-insoluble substances (charged molecules, ions) cross the lipid bilayer AGAINST their concentration gradient?

Primary Active Transport

- Primary active transport enables net transport of a solute <u>AGAINST</u> its concentration gradient that <u>REQUIRES</u> hydrolysis of ATP as energy source.
 - ATP-powered pumps. "ATPases".
 - Primary examples are; Ca²⁺ / H⁺ ATPase
 H⁺ / K⁺ ATPase
 Na⁺ / K⁺ ATPase

18

Na⁺ / K⁺ ATPase

Na⁺ / K⁺ ATPases most prevalent example of primary active transporters (vital for cell volume maintenance & neuronal cellular excitability).

In some cells (*e.g.*, neurones), energy needed to move these ions uses <u>70%</u> of all ATP production of the cell.

Carries three Na⁺ ions out of cell in exchange for two inward K⁺ ions – 'ELECTROGENIC PUMP'.

Na-K pump act as Carrier protein and binding site for Na inside the cell also binding site for K outside the cell

Function

1. Maintaining Na and K concentration difference

- 2. It's the basis of nerve signal transmition
- 3. Maintaining –Ve potential inside the cell

Active transport

Primary active transport of calcium (Ca ²+ ATPase)

- sarcoplasmic reticulum (SR)
- mitochondria
- in some cell membranes

Function: Maintaining a low Ca²+ concentration inside the cell

Primary active transport of hydrogen ions (H+-K ATPase)

- stomach
- kidneys
- pumps to the lumen

- H+-K ATPase inhibitors (treat ulcer disease). (omeprazol)

Secondary active transport

- Transport of one or more solutes against an electrochemical gradient, coupled to the transport of another solute down an electrochemical gradient
- "downhill" solute is Na.
- Energy is supplied indirectly form primary transport.
- Co transport:
- All solutes move in the same direction '' inside cell''. e.g.
- Na glucose Co transport.
- Na amino acid Co transport in the intestinal tract kidney.

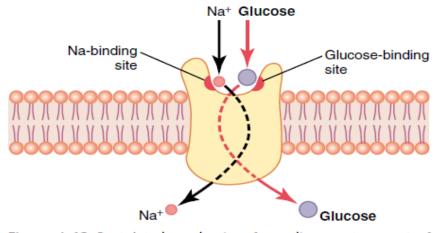
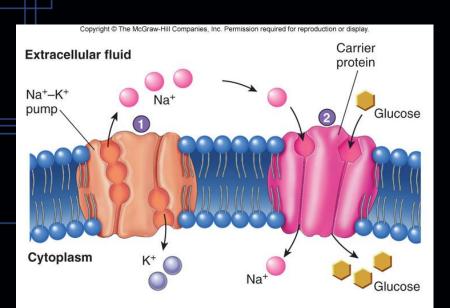
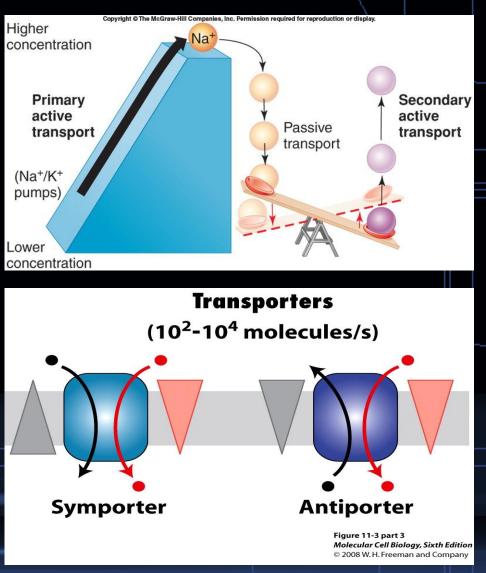
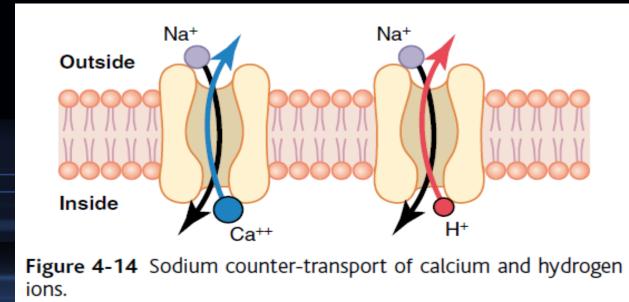




Figure 4-13 Postulated mechanism for sodium co-transport of glucose.

The Na⁺ / glucose symporter (Secondary Active Transport)


- A Na⁺-K⁺ pump (ATP-powered pump) maintains a concentration of Na⁺ that is higher outside the cell than inside.
- Sodium ions move back into the cell through a carrier protein (symporter) that also moves glucose. The concentration gradient for Na⁺ provides energy required to move glucose against its concentration gradient.

Active transport

Counter transport:

- Na is moving to the interior causing other substance to move out.
- Ca²+ Na+ exchanger (present in many cell membranes)
- Na –H+ exchanger in the kidney.

