(Foundation Block 4) Homeostasis I

By Ahmad Ahmeda

aahmeda@ksu.edu.sa 0536313454

Learning Objectives

- Define the components of a homeostatic system.
- Be able to recognize each of the components in representative systems.
- Define negative feedback.
- Explain how homeostatic mechanisms regulated by negative feedback detect and respond to environmental changes.
- Define positive feedback.
- Describe the actions of a positive feedback loop.

Homeostasis

 Homeostasis is the ability to maintain a relatively stable internal environment in an ever-changing outside world.

Is the tendency toward internal balance

• Chemical, thermal, and neural factors interact to maintain homeostasis.

Concept of Homeostasis

- The internal environment of the body (ECF) is in a dynamic state of equilibrium
- All different body systems operate in harmony to provide homeostasis
- Extreme dysfunction leads to death; moderate dysfunction leads to sickness.

Components of Homeostatic Systems

- The body maintains homeostasis by using homeostatic control systems
 - Three components associated with each system:
 - receptor
 - control center
 - effector

Receptor

- The structure that detects changes in a variable, the stimulus
 - e.g., a change in temperature
- Consists of sensory nerves

Components of Homeostatic Systems

Control center

- The structure that interprets input from the receptor
- Initiates changes through the effector
- A portion of the nervous system or an endocrine organ

Effector

- The structure that brings about change to alter the stimulus
- Most body structures
 - e.g., muscles or glands

Maintenance of Homeostasis

- Nervous system
 - Controls and coordinates bodily activities that require rapid responses
 - Detects and initiates reactions to changes in external environment
 - e.g., regulation of blood pressure upon rising
- Endocrine system
 - Secreting glands of endocrine regulate activities that require duration rather than speed
 - e.g., parathyroid hormone regulating calcium levels

Factors Homeostatically Regulated

- Concentration of nutrient molecules
- Concentration of water, salt, and other electrolytes
- Concentration of waste products
- Concentration of $O_2 = 100$ mmHg and $CO_2 = 40$ mmHg
- pH = 7.35
- Blood volume 4-6 L and pressure 120/80
- Temperature = 37° C

- Response of a homeostatic system occurs through a feedback loop:
 - stimulus
 - detection of stimulus by a receptor
 - information relayed to the control center
 - integration of the input by control center and initiation of change through effectors
 - return of homeostasis by the actions of effectors

The Control of Room Temperature

Homeostatic Control Systems

- Feedback refers to responses made after change has been detected
 - Types of feedback systems
 - Negative
 - Positive

Feedback Loops: Types

- Negative feedback loop
 - original stimulus reversed
 - most feedback systems in the body are negative
 - used for conditions that need frequent adjustment
- Positive feedback loop
 - original stimulus intensified
 - seen during normal childbirth

- Negative feedback
 - A type of homeostatic control system that maintains the variable within a normal range
 - Resulting action in the opposite direction of stimulus
 - Controls most processes in the body
 - Variable maintained within a normal level, its set point
 - fluctuates around the set point
 - If stimulus increases, homeostatic control system activated to cause a decrease in the stimulus
 - If stimulus decreases, homeostatic control system activated to cause an increase in the stimulus

Temperature regulation

- Body temperature drops
- Sensory receptors detect this and signal the hypothalamus (component of the brain)
- Hypothalamus alerts nerve impulses in blood vessels in the skin to decrease the inside opening of the vessels
- This decreases amount of amount of blood circulating to the surface of the body
- Less heat is released through skin
- Nerve impulses are sent to skeletal muscles, causing shivering
- Nerve impulses are sent to smooth muscles of hair follicles, causing "goosebumps"

Temperature regulation (*continued*)

- Body temperature rises
- Sensory receptors detect this and signal the hypothalamus
- Hypothalamus alerts nerve impulses in blood vessels in the skin to increase the inside opening of the vessels
- This increases the amount of blood circulating to the body surface
- More heat is released through skin

- Other examples of homeostatic regulation:
 - withdrawal reflex in response to injury
 - regulating heart rate and blood pressure during exercise
 - changing breathing rate in response to increased carbon dioxide
 - parathyroid hormone release in response to decreased calcium
 - release of insulin by the pancreas in response to increased blood glucose

- Positive feedback during breastfeeding
 - Sensory detectors detect baby suckling
 - Message is transmitted to the hypothalamus
 - Hypothalamus signals posterior pituitary to release the hormone oxytocin
 - Oxytocin stimulates the mammary gland to eject breast milk
 - Cycle repeats as long as the baby suckles
- Other examples of positive feedback:
 - blood clotting cascade
 - uterine contractions of labor

Positive Feedback during Childbirth

- Stretch receptors in walls of uterus send signals to the brain
- Brain induces release of hormone (oxytocin) into bloodstream
- Uterine smooth muscle contracts more forcefully
- More stretch, more hormone, more contraction etc.
- Cycle ends with birth of the baby & decrease in stretch

Homeostasis of Blood Pressure

- Baroreceptors in walls of blood vessels detect an increase in BP
- Brain receives input and signals from blood vessels and heart
- Blood vessels dilate, HR decreases
- BP decreases

