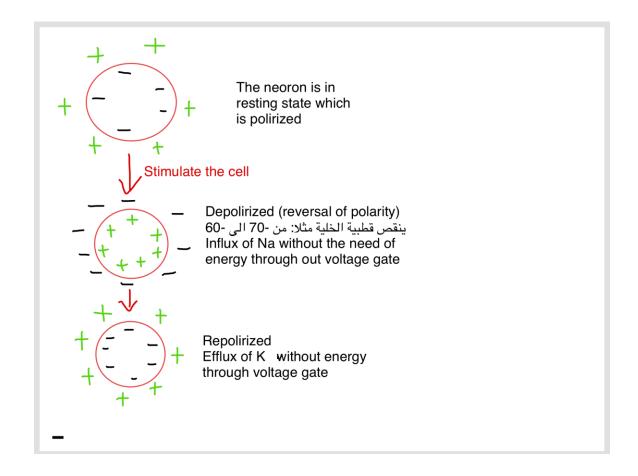
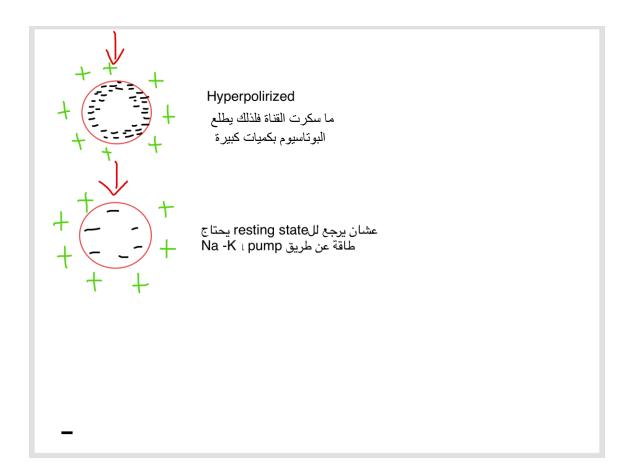
هذا الملف مجرد اجتهاد منا وليس مرجعاً للمذاكرة "ليس شاملاً" وإنما لترسيخ المفاهيم الأساسية المتعلقة بالمحاضرة وإنما لترسيخ المفاهيم الأساسية المتعلقة بالمحاضرة

Physiology team 435


- The myelin sheath is deposited around the axon by <u>Schwann cells</u>.
- Myelin sheath Conserve energy for axon
- Node of Ranvier: the gaps between stretches of myelin sheath generated by neuron "unmyelinated / non-insulator".
- Axon hillock > the start point of action potential because it has the most "voltage gated Na channels"
- The story of action potential reaction from the beginning tell the end:
- 1- Inside the cell: negative comparing with the outside in the rest state.
- 2- The cell is bag full of K+
- 3- There's phosphate & protein inside the cell which is carry negative charge which increase the negativity of the cell.
- 4- The main cause of cell negativity in the rest state is K+ goes "leak" outside the cell.
- 5- K+ pass through K+ leak channels.
- 6- K+ does not need "energy" to pass through K+ leak channels.
- 7- The cell membrane has a HIGH permeability for (K+), and LOW permeability for (Na+).
- 8- So the causes of the RMP > K+ leak channels "the main reason" + large molecules (protein phosphate) + Na&K pump.
- 9- The cell membrane separates the ve+ & -ve charges, at rest state (RMP)
- 10- Resting state this is the resting membrane potential before the action potential begins. The membrane is said to be "polarized" during this state because of the -70 or -90 mv negative membrane potential that is present.


Now, there is an electrical stimulation:

- 11- Threshold stimulus open voltage gated Na channels and Na influx rises resting potential from -90 towards zero (gradual <u>depolarization</u>).
- 12- As membrane potential raises, open more Na channels & more Na influx (+ve feedback) until all voltage gated Na channels open.
- 13- What opens the voltage gated channels? Opened by a stimulus <u>strong enough</u> to depolarize them to threshold.
- 14- Depolarized state: Occurs when membrane potential reach zero value to reach + 35 mv +ve charges (IN) -ve charges (OUT).
- 15- At + 35 mv all Na channels begin to close suddenly (Depolarization ends).
- 16- Repolarization Due to high K conductance(flow) to outside (K outflux) by opening of all voltage gated K channels (causes <u>negativity</u> inside).
 - -ve charges (IN) +ve charges (OUT).
- 17- Hyperpolarized: Why? Because K channel did not close.

(Increasing the number of charges inside and outside the cell, it may occur and may not).

- 18 To come back to the rest state we need the Na&K pump.
- 19- The whole process occurs in milliseconds.

• if the threshold was (50) then when you give <u>50</u> or <u>more</u> both will make the same action potential, but when you give less than 50 it will not make any action potential So:

- Supra threshold: action potential

- Threshold: action potential

- Sub threshold: no action potential

- All or nothing principle: Once threshold value for excitation is reached a full action potential produced, its intensity cannot increase by increasing stimulus intensity.
- Absolute refractory period : No new action potential possible
- Relative refractory period : Can trigger new action potential if stimulus is very strong.