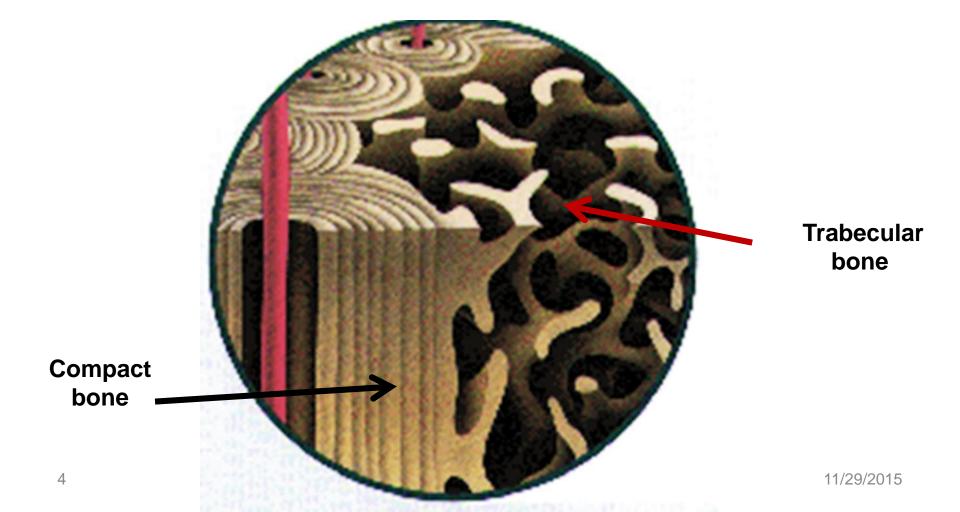


Dr Taha Sadig Ahmed Physiology Department College of Medicine , King Saud University

At the end of this lecture the student • should be able to:-

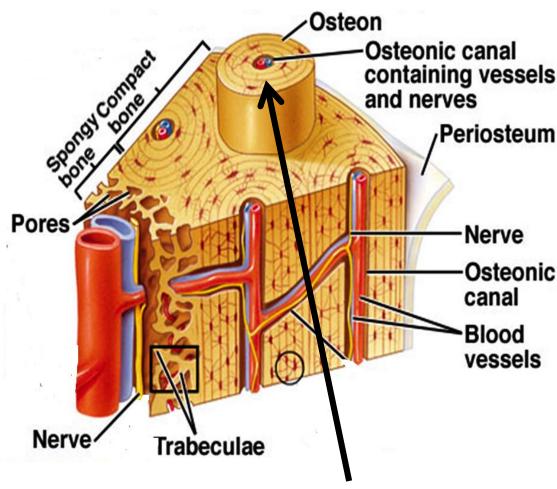
- Define bone & differentiate between types of bone (cortical & trabecular)


- State Ca⁺⁺ concentration and its forms in the ECF ; its relation to PO₄
- Differentiate between the types of bone cells & appreciate their functions .
- Describe bone formation & remodeling
- Understand what is osteoporosis
- Appreciate the effects of different hormones on bone

• <u>Functions of bone</u>

- Bone is a living, growing tissue which has several functions :
- \checkmark Protects vital organs
- \checkmark Provides support for soft tissues
- ✓ Allows & facilitates movement
- ✓ Contains bone marrow
- ✓ Reservoir for Calcium & Phosphate

• Structure of Bone


- (1) Organic matrix made of collagen , called osteoid , makes 30% of bone $\,$, on which is laid the \rightarrow
- (2) Inorganic (mineral) bone component \rightarrow called hydroxyapatite , made of CaPO_4 crystals , that constitutes the remaining 70% of bone

Bone is 2 types :

(1) Cortical (Compact) Bone

- Also called compact
- Forms a protective outer shell of bone.
- Comprises 80 % of total body bone mass
- Has'a slow turnover rate
- Has high resistance to bending and torsion
- It is composed of overlapping circular structures (formations) called Harvesian Systems or Osteons.

Each osteon has a central canal called Osteonic Canal or Haversain Canal
The Osteonic Canal contain blood vessels (capillaries, arterioles, venules), nerves and lymphatics.
Between Harvesian systems are concentric layers of mineralized bone called interstitial lamellae (B) Trabecular Bone

- Comprises 20% of total bone mass
- Present in the <u>interior</u> of bones & has spongy appearancfe.
- Though it represents only 20% of the skeletal mass, it has 5 times greater surface area than cortical bone
- Because of its large surfac, it has faster turnover rate than cortical bone ; hence it is more important than cortical bone in terms of calcium turnover
- Compared to cortical bone , it is:
- (1) less dense,
- (2) more elastic and
- (3) has a higher turnover rate than compact bone .
- ✓ The center of the bone contains red, yellow marrow, bone cells and other tissues.

Extracellular Fluid (ECF) Calcium

- Ca⁺⁺ level in plasma is 8.5-10 mg/dL .
- It exists in 3 fractions :
- (1) Ionized calcium \rightarrow <u>50%</u> of total ECF calcium
- (2) Protein-bound calcium → <u>40%</u> of total ECF calcium
 - Most of this is bound to albumin,
 - And much less is bound to globulins
- (3) The remaining <u>10%</u> of plasma calcium bound to citrate & phosphate
- Only the free, <u>ionized Ca²⁺ { (1) above }</u> is biologically active.

- Binding of calcium to albumin is pH-dependent :
- Alkalosis increases calcium binding to protein \rightarrow thereby decreases ionized calcium level
- Calcium is tightly regulated with Phosphorous in the body.
- PO_4 plasma concentration is 3.0-4.5 mg/dL.

• <u>Bone Cells</u>

- There are 3 types of bone cells:
 (1) Osteoblast :
- bone-forming cell .
- secretes osteoid (bone matrix , mainly collagen) on which Ca⁺⁺ and PO₄ are precipitated .
- Stimulated by anabolic steroids

(2) Osteoclast :

- Bone-resorbing (removing) cell, stimulated by PTH
 (3) Osteocyte :
- Transfers of calcium from canaliculi to the ECF

Bone Formation & Mineralization

- First osteoblasts synthesize bone matrix (osteoid , mainly collagen) \rightarrow
- which will then be mineralized by deposition of Calcium Phosphate on it
- This mineralization is dependent on Vitamin D
- Alkaline phosphatase and osteocalcin play roles in bone formation
- Their plasma levels are indicators of osteoblast activity

Bone Resorption (Osteolysis)

- Involves $BOTH \rightarrow$
- (1) calcium exraction (demineralization), & then \rightarrow
- (2) removal of the osteoid matrix
- Cells responsible for resorption are osteoclasts
- Bone resorptopn is stimulated by parathyroid hormonne (PTH), which stimulates osteoclasts → leads to release of calcium from bone into the ECF

Bone Remodeling

- This refers to the continuous processes of bone absorption (by osteoclasts) & then its deposition (by osteoblasts).
- This results in a 10% turnover of the adult bone mass per year
- Endocrine signals to resting osteoblasts generate paracrine signals to osteoclasts
- Osteoclasts digest and resorb and area of mineralized bone.
- Then local macrophages clean up debris.
- Then osteoblasts are recruited to site and deposit new matrix which will be mineralized.
- New bone replaces previously resorbed bone.
- Bone remodling affected by:-1-mechanical stress on bone stimulates formation of stronger bone 2- PTH and 1,25 Dihydroxycholecalciferol(active Vit D) stimulate activity & formation of osteoclasts
 - 3- Calcitonin inhibits activity of osteoclasts

Osteoporosis

- Men have more total bone mass than women .
- During childhood, bone formation exceeds resorption, and the total bone mass peaks at 25-35 years of age .
- Therefter , because of falling levels of the anabolic steroids (oestrogen & progesterone , which stimulate osteoblasts) , we get <u>osteoporosis</u> , which means reduced bone density and mass
- This leads to increased susceptibility to fracture.
- Osteoporosis occurs earlier in life for women than men (especially women around menopause). But eventually both genders succumb to it

•Thanks