6 Gas Transfer (Diffusion of O2 and CO2)

\square Extra information
Terms
Once you replace negative thoughts with positive ones, you'll start having positive results.

Objectives

I.Define partial pressure of a gas, how is influenced by altitude.
2.Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law)
3. Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law)
4. Describe the factors that determine the concentration of a gas in a liquid.
5. Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).
6. Knew the various factors determining gas transfer: - Surface area, thickness, partial pressure difference, and diffusion coefficient of gas
7. State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

Gas exchange

- After ventilation of the alveoli with fresh air the next step is the process called diffusion of oxygen $\left(\mathrm{O}_{2}\right)$ from the alveoli into the pulmonary blood and diffusion of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in opposite direction .
- Partial pressure of the gas is The rate of diffusion of each of these gases is directly proportional to the pressure caused this gas alone.
- Pressure is caused by the constant impact of kinetically moving molecules against a surface.

ALVEOLUS GAS EXCHANGE

[^0]
Factors affecting gas diffusion

Formula

$$
D \alpha \frac{\Delta P \times A \times S}{d \times \sqrt{M W}}
$$

D: Diffusion.
I- P: Partial pressure differences.
2- A: Surface area for gas exchange.
3- d: Diffusion distance.
4- MW: Molecular weight.
5- S: Solubility of gas.
6-Temperature of the fluid.

- O 2 has lower molecular weight (31.99) than CO 2 (40)
- But CO 2 is 24 times more soluble than O 2 .

Net result :CO2 diffusion approx. 20 times faster thanO2 diffusion.

Delta P: (Increase partial pressure > Increase Diffusion)
(Alveolar $\boldsymbol{-}$ Capillaries membrane $=$ Respiratory membrane) For example :

- Increase PO2 In alveoli > Increase diffusion in the direction of pulmonary capillaries. -Increase PO2 In pulmonary capillaries > Increase diffusion in the direction of alveoli. Surface area (A): (Increase surface area > Increase Diffusion)
So, How the surface area will Decrease?
In alveoli :
I- By Trypsin (As we said in lecture one which is lysis the respiratory wall)
2- By Obstruction of some bronchioles or bronchi by mucous or tumor.
In pulmonary capillaries:
I- By thrombus or blood clot.
2- Loss of "Perfusion" = No blood flow.
3- Loss of "Ventilation"
Solubility (S): (Increase the solubility of gas > Increase the diffusion of it)
-CO 2 is 20 times soluble than O 2 .
-CO2 More "Diffusible" than O2.
Distance (d) : (Distance $=$ Thickness of respiratory membrane)
(Increase Distance > Decrease Diffusion)
How do we increase the thickness of respiratory membrane?
I- By accumulation of fibrous tissue. People who have "Interstitial Pulmonary fibrosis" They have problem with diffusion of gases.
2- By increase "ECF" between alveoli or even inside the alveoli. People who have "Pulmonary Edema"
Molecular weight (MW): EX: MW = 9 .. $\sqrt{ } \mathbf{M W}=3$
(Increase $\sqrt{ } \mathbf{M W}$ of diffusing molecules $>$ Decrease the diffusion)

Factors affecting gas diffusion Cont...

$S / \sqrt{ } M W$: is called the diffusion coefficient of the gas.
-The relative rates at which different gases at the same pressure level will diffuse are proportional to their diffusion coefficient. يعني لو خليت الفرق بين الضغوط عند الRespiratory membrane نفسه لكل الغاز ات ،اللي رح ينفذ أول هو ثاني أكسيد الكربون ثم الأوكسجين ثم النيتروجين تبعاً للجدول لـ.

Gas	Diffusion Coefficient
Nitrogen	0.53
Oxygen	1
Carbon dioxide	20

WHY do we have this parameter ?

Solubility and Molecular weight. These two factors because they're a unique features for each gas. -O2 has its own solubility and its own MW , also CO2. We know that :
I- O2 Less MW than CO2 "That's mean More diffusible!"
2-CO2 More soluble than O2 "That's mean More diffusible!"

So ,Why they said CO2 more diffusible not O2?
على أي أساسا حكمو ؟؟
عشان هاللخبطة اللي صـارت قرروا بتعاملون مع حاصل قسمة الصفتبن

ثاني أكسيد الكربون أعلى بالنالي من هنا حكموا أنه أكثر نفاذية من

Prysiologr Pryskiliog

Composition of respiratory air

Why N2 inhaled and exhaled in same conc.? Because it's from inner gases that's only take place in our body with any function There's no diffusion of N 2 in our bodies.

From where this 4% of CO2 came ? And why the $\mathbf{O 2}$ conc. Reduced to 16% ? -Because of "Aerobic metabolism" HOW? We know that:
Food stuff $+\mathrm{O} 2(4 \%) \rightarrow$ ATP $+\mathrm{H} 2 \mathrm{O}+$ Urea $+\mathrm{CO} 2(4 \%)$
The main goal of this process is producing energy for the muscles ,But while I producing ATP there's another product which is CO 2 . This CO 2 is exhaled in the same conc. of the used O 2 conc. in this metabolic process.
And the O 2 will reduced to 16% from 20%.
SO, The $\mathbf{O 2}$ is helping in producing $\mathbf{C O 2}$.

Partial pressure of O_{2} and CO_{2}

-Oxygen concentration in the atmosphere is 21% (\mid atmosphere $=760 \mathrm{mmHg}$) So:
PO2 in atmosphere $=760 \mathrm{mmHg} \times 21 \%(0.21)=160 \mathrm{mmHg}$
(This mixed with "Old" air already present in alveolus to arrive at PO2 of 104 mmHg in alveoli)

-Carbon dioxide concentration in the atmosphere is 0.04% So :

PCO2 in atmosphere $=760 \mathrm{mmHg} \times 0.04 \%(0.0004)=0.3 \mathrm{mmHg}$
(This mixed with high CO2 levels from residual volume or (FRC) in the alveoli to arrive at PCO2 of 40 mmHg in the alveoli)

- And that is why the O 2 enter the body because the PO 2 outside $=160 \mathrm{mmHg}$ Higher than inside (in alveoli) $=104 \mathrm{mmHg}$.
- So as a result, the O2 will move from high pressure to low pressure.

-	In Atm (Inspired air)	In alveoli
$\underline{\mathbf{P O 2}}$	$21 \% \ldots 160 \mathrm{mmHg}$	104 mmHg
$\underline{\mathbf{P C O 2}}$	$0.04 \% . .0 .3 \mathrm{mmHg}$	40 mmHg

Partial pressure of O_{2} and CO_{2}

BOYS NOTES

Alveoli
The blood in alveolus are resemble to the blood in "Pulmonary Veins" which contain "Arterial blood"
-Rich > O2

- Poor > CO2

Also, in alveolus more O 2 than CO 2 .

- Consider air, which has an approximate composition of $79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$.
-The total pressure of this mixture at sea level averages 760 mm Hg . It is clear from the preceding description of the molecular basis of pressure that each gas contributes to the total pressure in direct proportion to its concentration.
- Therefore, 79% of the 760 mm Hg is caused by $\mathrm{N}_{2}(600 \mathrm{mmHg})$ and 21% by $\mathrm{O}_{2}(160$ mmHg).
-Thus, the "partial pressure" of nitrogen in the mixture is 600 mm Hg , and the "partial pressure" of oxygen is 160 mm Hg .
-The total pressure is 760 mmHg , the sum of the individual partial pressures.
- The partial pressures of individual gases in a mixture are designated by the symbols PO_{2}, $\mathrm{PCO}_{2}, \mathrm{PN}_{2}, \mathrm{PH}$, and so forth.

Partial pressure of O_{2} and CO_{2}

[^1]
PO2 and PCO2 in air, lung and tissues

Figure 35-1.

Copyright 2006 by The McGraw-Hill Companies, Inc. All rights reserved.

PO_{2} and PCO_{2} in various portions of normal expired air

O_{2} and CO_{2} Concentration in the alveoli

- At resting condition $\mathbf{2 5 0} \mathbf{~ m l}$ of O_{2} enter the pulmonary capillaries/min At ventilation rate 4.2 L/min.
- During exercise 1000 ml of O_{2} is absorbed by the pulmonary capillaries/min So the rate of alveolar ventilation must be increased 4 times to maintain the alveolar PO_{2} at the normal value of 104 mmHg .
- Normal rate of $\underline{C O}_{2}$ excretion is $200 \mathrm{ml} / \mathrm{min}$, At normal rate of alveolar ventilation of $4.2 \mathrm{~L} / \mathrm{min}$.

BOYS NOTES

- Oxygen is continually being absorbed from the alveoli into the blood of the lungs, and new oxygen is continually being breathed into the alveoli from the atmosphere.
- The more rapidly oxygen is absorbed, the lower its concentration in the alveoli becomes; conversely, the more rapidly new oxygen is breathed into the alveoli from the atmosphere, the higher its concentration becomes.
Therefore, oxygen concentration in the alveoli, as well as its partial pressure, is controlled by:
(1) the rate of absorption of oxygen into the blood and
(2) the rate of entry of new oxygen into the lungs by the ventilatory process.

7
 Oxygen and Carbon dioxide Transport

A strong positive self-image is the best possible preparation for success.

Objectives

I. Understand the forms of oxygen transport in the blood, the importance of each.
2. Differentiate between $\underline{\mathrm{O} 2 \text { capacity, } \mathrm{O} 2 \text { content and } \underline{\mathrm{O} 2} \text { }}$ saturation.
3. Describe (Oxygen- hemoglobin dissociation curve)
4. Define the P50 and its significance.
5. How DPG, temperature, $\mathrm{H}+$ ions and PCO2 affect affinity of O 2 for Hemoglobin and the physiological importance of these effects.
6. Describe the three forms of carbon dioxide that are transported in the blood, and the chloride shift.

Forms of O_{2} Transport

Normally O 2 in blood in two forms:
(Dissolved) 3\%
This form soluble in water of plasma.
(Oxyhemoglobin) 97\%
This form bind with Hb . IHb can bind to 4 O 2

Transport of O 2 and Co 2 in the blood and body fluids

- O 2 is mostly transported in the blood bound to hemoglobin .
- If the PO 2 increases Hb binds O 2 .
- If PO 2 decreases Hb releases O 2 .
- O 2 binds to the heme group on hemoglobin, with 4 oxygens $/ \mathrm{Hb}$.
- Whenever PO2 increase, the binding between Hb and O 2 will increase.
- The alveoli have the place of the highest $\mathrm{PO} 2=104 \mathrm{mmHg}$.
- The tissues have the place of the lowest $\mathrm{PO} 2=40 \mathrm{mmHg}$.
- $\mathrm{PO} 2 \uparrow>$ More O 2 bind with $\mathrm{Hb} \uparrow>$ Batter transport of O 2 .
- $\mathrm{PO} 2 \downarrow>$ Less O 2 bind with $\mathrm{Hb} \downarrow>\mathrm{Hb}$ release O 2 easily.
- Always the place of binding O 2 with Hb is in the lung (Alveoli)
- When the hemoglobin bind with four O2 called "Fully saturated"
- When the hemoglobin bind with less than four O2 called "Partial saturated"

Terminology

O_{2} content
O_{2}-binding capacity

Percent

 saturationDissolved O_{2}

- The mount of O_{2} in blood. (mL O_{2} / 100 mL blood).
- The maximum amount of O_{2} bound to hemoglobin ($\mathrm{mL} \mathrm{O} 2 / 100 \mathrm{~mL}$ blood) measured at 100% saturation.
- \% of heme groups bound to O_{2}
- \% Saturation of $\mathrm{Hb}: \frac{\text { Oxygen content }}{\text { Oxygen capacity }} \times 100$
- Unbound O_{2} in blood (mL O2/I00 mL blood)

$100 \mathrm{ml} \mathrm{Blood-}$	100\% saturated with O 2	97\% saturated with O2
$\mathrm{Hb} \rightarrow$	15 g Hb	Decrease saturation > Decrease the O 2 content from 20 ml to $19.4 \mathrm{ml} / 100 \mathrm{ml}$ in blood.
each gram of Hb carry \rightarrow	$1.34 \mathrm{ml} \mathrm{O2}$	
O 2 - content \rightarrow	$15 \times 1.34=20 \mathrm{~m} / / 100 \mathrm{ml} \mathrm{blood}$.	

* Amount of oxygen released from the hemoglobin to the tissues is $5 \mathrm{ml} \mathrm{O}_{2}$ per each 100 ml blood.
- At rest:

| O2 content in arterial |
| :---: | :---: | :---: |
| blood |\quad O2 released in tissue \quad| So, O2 content iv venous |
| :---: |
| blood |

* At rest tissues consume $\mathbf{2 5 0} \mathbf{~ m l ~} \mathrm{O}_{\mathbf{2}} / \mathrm{min}$ and produce $\mathbf{2 0 0} \mathbf{m l ~ C O}$
* During strenuous exercise :

O2 content in arterial	O2 Uptake by the tissue increase " 3 folds"	So, O2 content iv venous blood
$19.4 \mathrm{ml} \mathrm{O} 2 / 100 \mathrm{ml}$	$5 \times 3=15 \mathrm{ml} \mathrm{O} 2 / 100 \mathrm{ml}$	$19.4-15=4.4 \mathrm{ml} \mathrm{O} 2 / 100 \mathrm{ml}$

Oxygen Transport In Blood

- Higher $\mathrm{PO} 2_{2}$ results in greater Hb saturation.
- The relation between PO 2 and Hb O 2 is not linear.
- The curve is called Oxyhemoglobin Saturation Curve.
- Which is \underline{S}-shaped or sigmoid.

الاوكونون مشبعين بالأوكسبين ،مشبع بمعنى كل ا هيهو قلوبين مرثبط فيه أربعة من الأوكسينين.
- $\uparrow \mathrm{PO} 2>\uparrow$ Binding O 2 to $\mathrm{Hb}>\uparrow$ Saturation of Hb .

Oxyhemoglobin Dissociation

 Curve

- The position of the dissociation curve can be determined by measuring the P50.
- P50:The arterial PO_{2} at which 50% of the Hb is saturated with O_{2}, normally $\mathrm{P} 50=$ 26.5
- Decreased P50 means increased affinity of Hb to O_{2} or shift of the curve to left.
- Increased P50 means decreased affinity or shift of the curve to right.
- Where is the normal curve from these 3 curves? To know that, you have to measure the P50! P50 means how many PO2 I need to arrive 50% saturation hemoglobin with O 2 , which is the normal.
- So, we need $\mathrm{PO} 2=26.5$ to saturate the hemoglobin with O 2 in 50%.
- $\mathrm{P} 50=\mathrm{PO} 2=26.5$
- For example ; a person everything is normal with no anemia when he exposed to PO2 $=27$,this enough for \% saturation $=50$.
- At this normal stage the affinity between Hb and O 2 is the "reference point"

PHYSIOLOGY PHEYSIOLOG

Oxyhemoglobin Dissociation Curve

The Right Shift

"Right Shift"

means the oxygen is unloaded to the tissues from

 Hb .The factors that Shift the curve to the right: Increased 2,3DPG, $\mathrm{H}+$, Temperature, PCO2.

- 2,3DPG is synthesized in RBCs from the glycolytic pathway, it binds tightly to reduced Hb .
- increased 2,3 DPG facilitate the oxygen release and shifts the dissociation curve to Rt.
- 2,3 DPG increases in the RBCs in anemia and hypoxemia, and thus serves as an important adaptive response in maintaining tissue oxygenation.

[^2]
The Left Shift

"Left Shift"

means the oxygen is loading or attachment to Hb . Fetal Hb : has a P50 of 20 mmHg in comparison to 27 mmHg of adult Hb .

Low PO2 $=20>$ Low P50 $>$ High affinity $>$ Shift to the left.

FIGURE 4-15 The oxyhemoglobin dissociation curve.

The fetal Hb has high affinity with O2 maybe "Up to normal" > lead to decrease releasing O2 in tissue > Low O2 conc. In tissue "Hypoxia".
To solve this problem!

- The fetus's kidney will release "Erythropoietin" which stimulate RBC's formation > Increase RBC's > Increase Hb > So, increase releasing of O2 in tissue.
After birth:
The fetal Hb will be HbA (No hypoxia)

Shift Of Dissociation Curve During Exercise

- Exercise increases Temp, H+, 2,3 DPG and shift the curve to Right.
- Utilization Coefficient :The percentage of the blood that gives up its oxygen as it passes through the tissues capillaries is called :

Utilization coefficient $=\mathrm{O}_{2}$ delivered to the tissues O_{2} content of arterial blood

- Normally at rest $=5 \mathrm{ml} / 20 \mathrm{ml}=25 \%$.
- During exercise it $=15 \mathrm{ml} / 20 \mathrm{ml}=75 \%-85 \%$

```
- We know that 5ml O2 from l00ml blood goes to the tissue.This 5ml = 1/4 called "Utilization coefficient". معامل الإستها\
At normal/rest state Utilization coefficient = 25%
But, During exercise will increase to 50% or 75%.
```


Bohr Effect

Effect of carbon dioxide and hydrogen ions on the curve (Bohr effect)

* At lung: movement of CO_{2} from blood to alveoli will decrease blood $\mathrm{CO}_{2} \& \mathrm{H}+\rightarrow$ shift the curve to left and increase O_{2} affinity to Hb allowing more O_{2} transport to tissues.
* At tissues: the reverse occur.

Transport of oxygen in the dissolved state

- Only 3% of O_{2} is transported in the dissolved state.
- At normal arterial PO_{2} of 95 mmHg , about 0.29 ml of oxygen is dissolved in each 100 ml of blood.
- When the PO_{2} of the blood falls to 40 mmHg in tissue capillaries, only 0.12 of oxygen remains dissolved.
- 0.17 ml of oxygen is normally transported in the dissolved state to the tissues per each 100 ml of blood.

```
Hb-O2 State (Storage O2 in tissue) = 20%
Dissolved-O2 State (actually used by tissue) = 3% only 0.I7 to tissue."The only form that tissue can used directly"
When we measuring the PO2 we are measuring the "Dissolved form"
```


Combination of Hb with CO , Displacement of Oxygen

- CO combines with Hb at the same point on the Hb molecule as does oxygen.
- It binds with Hb about 250 times as much as O_{2} (affinity of Hb to CO is very high (250 times) that to O_{2}.
- It causes Left shift of the $\mathrm{O}_{2}-\mathrm{Hb}$ curve.

[^3]PHYSIOLOGY TEAM435

Formation of HCO_{3} and Chloride Shift

In Tissues

In Pulmonary Capillaries

The Haladane Effect

- When oxygen binds with hemoglobin, carbon dioxide is released - to increase CO_{2} transport.
- Binding of Hb with O_{2} at the lung causes the Hb to become a stronger acid and, this in turn displaces CO_{2} from the blood and into the alveoli.
- Change in blood acidity during CO_{2} transport.

Arterial blood has a PH of 7.41 that of venous blood with higher PCO_{2} falls to 7.37 (i.e change of 0.04 unit takes place)

Respiratory Exchange Ratio

$R=\frac{\text { Rate of carbon dioxide output }}{\text { Rate of oxygen uptake }}$

- Normally it is $4 / 5=82 \%$.
- When Carbohydrate diet is used $R=1$
- When fats only is used $R=0.7$
- A person on normal diet $\mathrm{R}=0.825$

Video

Partial Pressure:
https://www.youtube.com/watch?v=yEK6LdwYunQ!

Quiz

https://www.onlineexambuilder.com/lecture-7/exam-57809

Physiology Team

Leaders:

- Omar AlOtaibi
- Samar AIOtaibi

Girls members:

- Khawla Alammari
- Sara Alenezy
- Nouf Alrushaid
- Nouf Alabdulkarim
- Shadn Alomran
- Reem Alagail
- Nurah Alqahtani
- Malak Alsharif
- Ghaida Aljamili
- Monirah Alsaloli
- Lojain Alsiwat

Boys members:

- Rawaf Alrawaf
- Abdulaziz Alghanaym
- Abdulrahman Albarakah
- Abdullah Aljaafar
- Adel Alshihri
- Abdulmajeed Alotaibi
- Khalil Alduraibi
- Hassan Albeladi
- Omar Alshehri
- Abdulrahman Thekry
- Abdulaziz Alhammad

THANK YOU FOR CHECKING OUR WORK

For any correction, suggestion or any useful information, please contact us: Physiology435@gmail.com

[^0]: How does gas has pressure?
 Gases in form of molecules ,these molecules have (Kinetic motion/movement) so, they're in "Constant motion". This motion cause Impact of gas molecules ,the force of this collisions collected together then will called "Pressure"
 -No differences in pressures > No gases movement >No gas exchange.

[^1]: Oxygen journey: Atmosphere -> Alveoli -> Pulmonary capilary blood -> Arterial blood -> Peripheral capilaries -> Tissue fluid -> Cells

[^2]: - Mainly "Right shift" occurs during exercise.

 During exercise, we need more O 2 so, the PO 2 will increased to make the affinity low between O 2 \& Hb to facilitate the releasing of O 2 to the tissue. This process shift the curve to the Right.

 - 2,3DPG = 2,3-diphosphoglycerate. He loves binding to Hb which doesn't have O 2 binding to it "Reduced Hb " or "Deoxygenated Hb" so, the O2 can't bind to this Hb which leads to "Decrease affinity".
 - Hypoxemia >> In people who live in High altitude.
 - من رحمة اله تعالى بمرضى الأنيميا أن هذه المادة 2,3DPG تزيد عندهم ! بما أن الهيموجلوبين عندهم يكون قليل جداً بالتالي لو كانت الجاذبية بينه وبين الأوكسجين عالية مارح يكون فيه أوكسجين يطلق بالانسجة !! فتزيد هذه المادة عشان تقلل من الجاذبية ويطلق أوكسجين أكثر في الأنسجة

[^3]: Why is cause Left shift NOT Right shift?
 بوجود ال CO عندنا مثكلة مع تر ابط الأوكسجين للهيمو جوبين ،فنحاول
 نزيد من جاذيبية الالكسجين بالثاللي تحصل الإزا احة للبسار، بِني لو فيه عدد
 قلبل من الO2 مرتبط مع الHb بتكون الجاذبية بينهم جدأ عالية.
 بشكل عال لو قارنا تجابن الO2 اللي ماعندها CO بالأوكسين اللي
 عنده CO يتنافس معه نلقى الثاني جانّبيته و وتوته أكثر يعني شفت للبيسار.

