

Phospholipid Compounds of Physiological Importance

Reem M. Sallam, M.D.; Ph.D.

By the end of this lecture, students are expected to:

- Discuss selected members of phospholipids
- Describe the physiological importance of phospholipids with specific examples
- Distinguish various Plospholipases and describe their roles:
 - Phospholipases A1, A2, C and D
 - Lysosomal phospholipase: Sphingomyelinase

Functions of Phospholipids

(A)Membrane-bound phospholipids:

Structural: Predominant lipids of cell membranes

<u>Anchoring</u>: Attaching some proteins to membranes

Signaling: Source of IP3 and DAG

Myelin sheath: insulator and speeds up transmission of nerve impulses

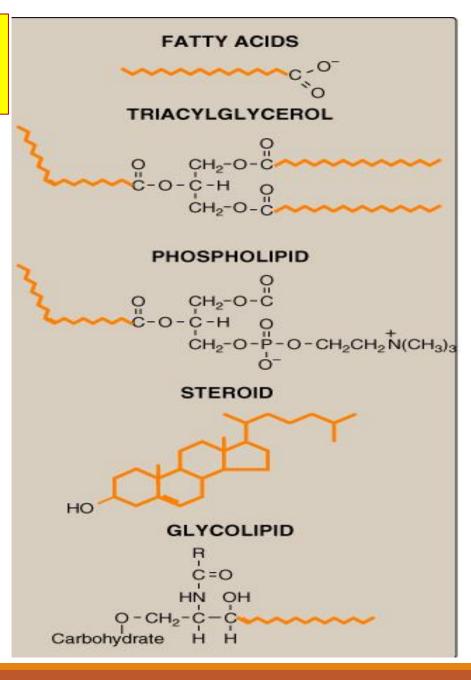
Functions of Phospholipids

CONT'D

- **(B)Non-membrane-bound phospholipids:**
- Easy re-inflation of alveoli by air: Lung surfactant
- **Detergent** effect: Essential component of bile
 - Solubilize cholesterol
 - **Preventing gall stones**
 - **Emulsifying lipids**
 - **Helping lipid digestion**
- **<u>Structural</u>: Coat of lipoproteins**

Background: Lipid Compounds

Heterogeneous group


Relatively water-insoluble (Exception: Ketone bodies)

Soluble in non-polar solvents

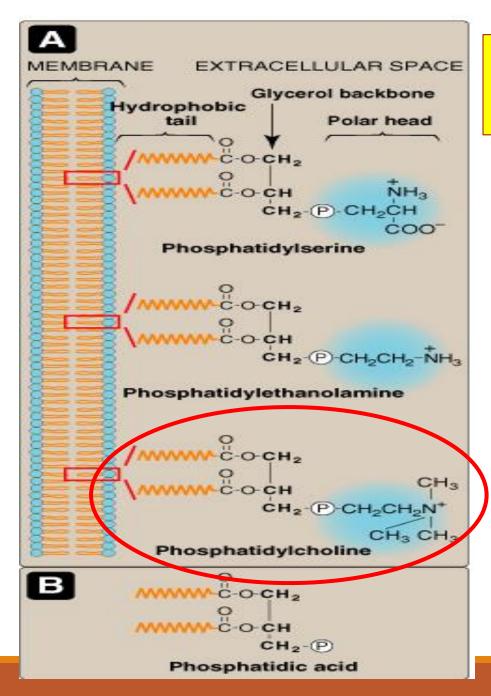
Lipid Compounds: Heterogeneous Group

A. Simple Lipids: Fatty acids Ketone bodies Triacylglycerol Cholesterol

B. Complex Lipids: Phospho<u>lipids</u> Lipoproteins Glyco<u>lipids</u>

Phospholipids

A. Glycerophospholipids


- Glycerol-containing phospholipids
- Degraded and remodeled by phospholipases

B. Sphingo-phospholipids:

- Sphingosine-containing phospholipids
- Degraded by lysosomal phospholipase (sphingomyelinase)

Phospholipids

- **A. Glycerophospholipids:**
- 1. Phosphatidylcholine (Lecithin) e.g., Surfactant (Dipalmitoylecithin)
- 2. Phosphatidylinositol (Signaling & Anchoring molecule)

Phospholipids: Glycerophospholipids

Parent Compound: Phosphatidic acid

Members:

1.Phosphatidylcholine (Lecithin) e.g., Surfactant (Dipalmitoylecithin)

Phospholipids: Glycerophospholipids

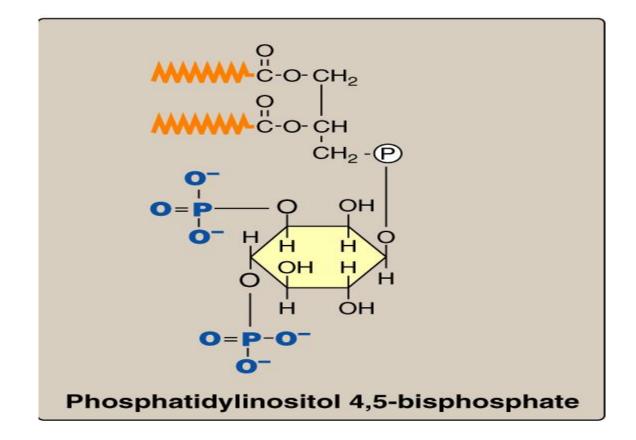
1. Dipalmitoylecithin (Lung surfactant)

- Synthesis and secretion: by granular pneumocytes
- It is the major lipid component of lung surfactant (65%) (Remaining 35% is: Other phospholipids, cholesterol & proteins)
- Surfactant decreases surface tension of fluid layer lining of alveoli, reducing the pressure needed for their inflation by air, and preventing alveolar collapse (atelectasis)
- Congenital Respiratory distress syndrome (RDS): Insufficient production of lung surfactant (especially in preterm babies) \rightarrow neonatal death

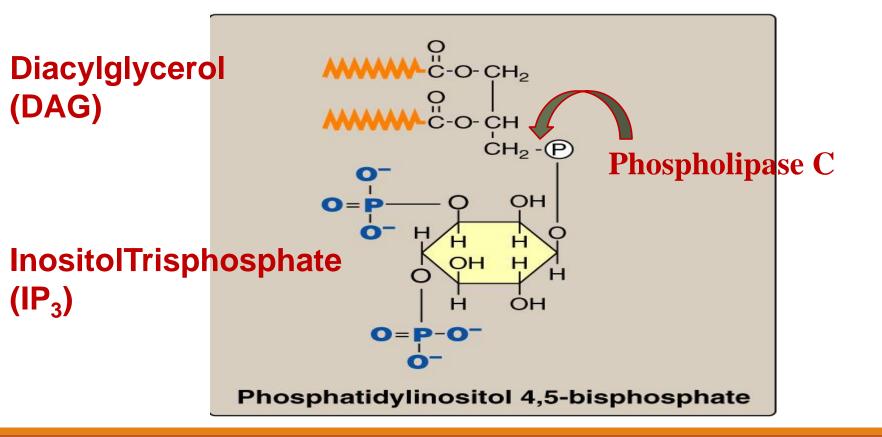
Congenital Respiratory distress syndrome (RDS) Pre-natal diagnosis by: Lecithin/sphingomyelin (L/S) ratio in amniotic fluid

Ratio of 2 or above indicates lung maturity and no RDS (i.e., shift from sphingomyelin to lecithin synthesis by pneumocytes that normally occurs by 32 wks. of gestation)

Prevention:


Glucocorticoids to the pregnant mother with low L/S ratio shortly before delivery

Treatment:


Intratracheal administration of surfactant to pre-term infants with RDS

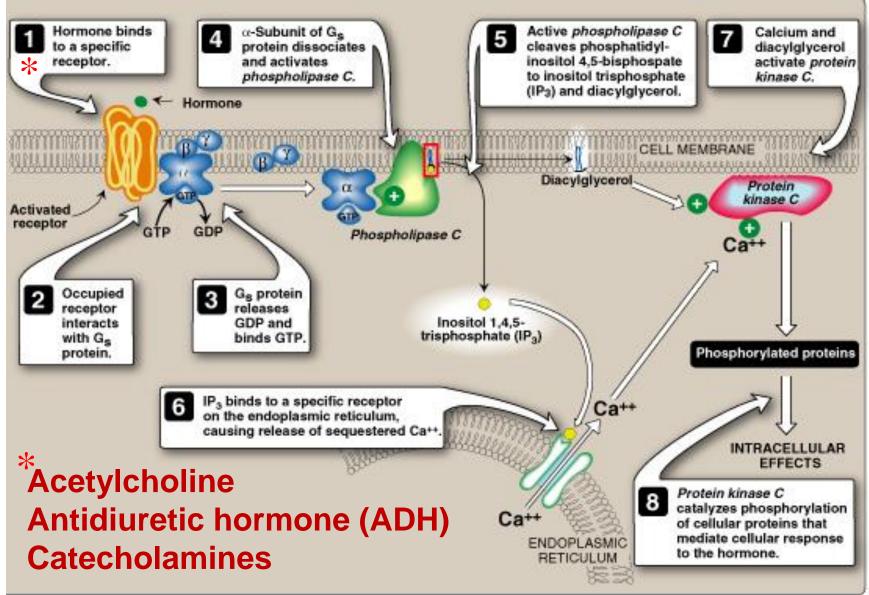
Phospholipids: Glycerophospholipids

2. Phosphatidylinositol 4,5 bisphosphate (PI)

Calcium/Phosphatidylinositol System

Phosphatidylinositol System Role in signaling

Signal:

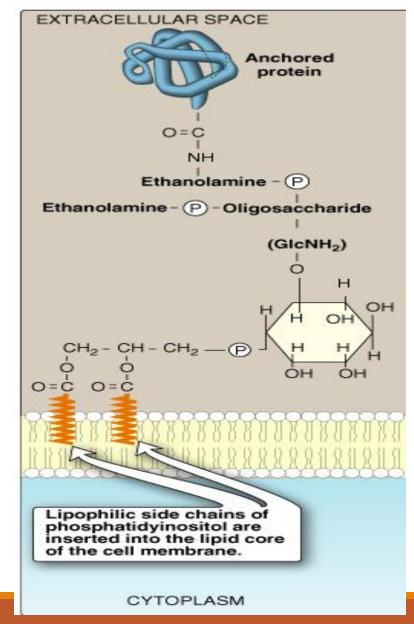

Hormones or neurotransmitters e.g., Acetylcholine, antidiuretic hormone (V1receptor) and catecholamines (α₁ actions)

Receptor: G-protein coupled receptor

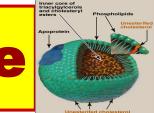
Effects:

Activation of phospholipase C Hydrolysis of phosphatidylinositol 4,5-bisphosphate→ Production of IP3 (↑ Ca²⁺) and DAG Activation of protein kinase C

<u>Response</u>: Phosphorylation of cellular proteins \rightarrow and responses to hormones


Intracellular Signaling by Inositol trisphosphate

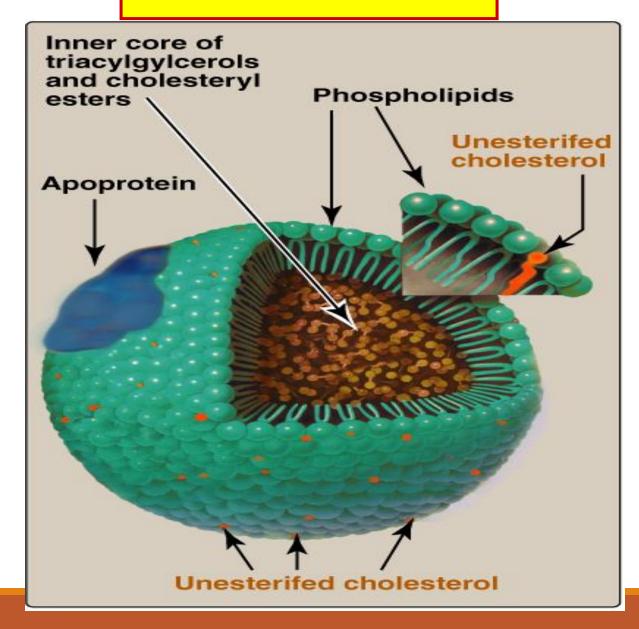
Phosphatidylinositol Role in Protein Anchoring


Anchoring of proteins to membranes via Carbohydrate-Phosphatidylinositol Bridge

Examples of anchored proteins: 1. Alkaline phosphatase (to the surface of small intestine) 2. Acetylcholine esterase (to postsynaptic membrane)

These proteins can be cleaved from their attachment to the membranes by phospholipase C

Lipoprotein Structure



Outer part (coat): Apoproteins or apolipoproteins Phospholipids (Why?) Free cholesterol (Relatively hydrophilic) Allowing transport of lipid particles of the core in the aqueous plasma

Inner part (core):

- According to the type of lipoproteins
- Different lipid components in various combinations

Lipoprotein Structure

HDL has the highest content of phospholipids among all classes of lipoproteins

Different classes of lipoproteins:

- 1- Chylomicrons
- 2- Low density lipoproteins (LDL)
- 3. High density lipoproteins (HDL)
- 4- Very low density lipoproteins (VLDL)

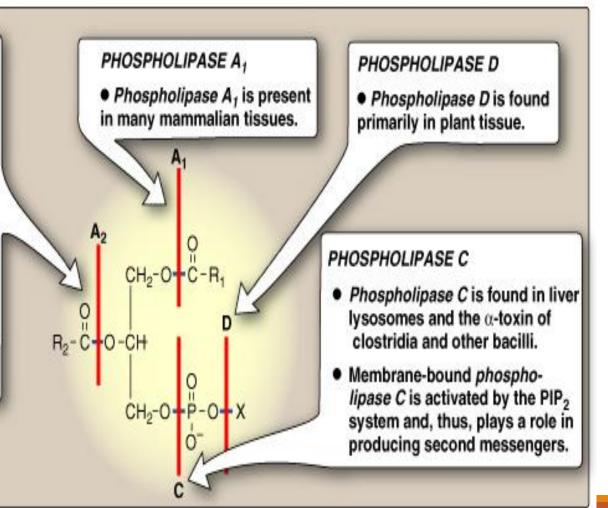
HDL has the highest content of Phospholipids.

Phosphatidyl choline (lecithin) acts as a source for fatty acids necessary for esterification of cholesterol on the surface of HDL by lecithin-cholesterol acyl transferase (LCAT/PCAT)

Phospholipases

(1) For glycerophospholipids:

Phospholipases A1, A2, C and D
Present in all tissues and pancreatic juice
Present in snake venoms and bacterial toxins
Phospholipase A2 is important for the
remodeling of phospholipids to produce the
lung surfactant


(2) For sphingophospholipids:

Lysosomal phospholipase (Sphingomyelinase)

Glycero-phospholipases

PHOSPHOLIPASE A2

- Phospholipase A₂ is present in many mammalian tissues and pancreatic juice. It is also present in snake and bee venoms.
- Phospholipase A₂, acting on phosphotidylinositol, releases arachidonic acid (the precursor of the prostaglandins).
- Pancreatic secretions are especially rich in the *phospholipase* A₂ proenzyme, which is activated by *trypsin* and requires bile salts for activity.
- Phospholipase A₂ is inhibited by glucocorticoids (for example, cortisol).

Functions of Phospholipases

(1) **Degradation of phospholipids**

- Production of second messengers
- Digestion of phospholipids by pancreatic juice
- Pathogenic bacteria degrade phospholipids of membranes and causing spread of infection

(2) Remodeling of phospholipids:

- Specific phospholipase removes fatty acid from phospholipid (e.g. Phospholipase A2 is important for the remodeling of phospholipids to produce the lung surfactant
- Replacement of fatty acid by alternative fatty acid using fatty acyl CoA transferase
- e.g., Binding of 2 palmitic acids in Dipalmitoylphosphatidylcholine (DPPC)
- Binding of arachidonic to carbon 2 of PI or PC

Take Home Message

> Phospholipids are Complex lipids > Phospholipids have important physiological functions: **A. Membrane-bound:** Structural Signaling & anchoring: e.g., PI Myelin sheath: e.g., sphingomyelin **B.** Non-membrane bound: **Structural: Lipoprotein coat Alveolar re-inflation: Lung surfactant Detergent effect: Phospholipids of bile**

Take Home Message

CONT'D

Phospholipases:

Phospholipases A1, A2, C and D Lysosomal Phospholipase: Sphingomyelinase

Function of phospholipases:

Degradation of phospholipids e.g., production of second messengers Remodeling of phospholipids e.g., production of DPPC (lung surfactant)