Gas Transfer (Diffusion of O2 and CO2)

Dr.Aida Korish
 Associate Prof.PHysiology

Objectives

1-Define partial pressure of a gas, how is influenced by altitude.
2- Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law)

3- Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law)

4- Describe the factors that determine the concentration of a gas in a liquid.
5- Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).

6- Knew the various factors determining gas transfer: -
Surface area, thickness, partial pressure difference, and diffusion coefficient of gas
7- State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

Gas exchange through the respiratory membrane

(a)

- After ventilation of the alveoli with fresh air the next step is the process called Diffusion of oxygen and carbon dioxide.
- The rate of diffusion of each of these gases is directly proportional to the pressure caused by this gas alone which is called the partial pressure of the gas
- Pressure is caused by the constant impact of kinetically moving molecules against a surface.

Factors affecting gas diffusion

$$
D \quad \alpha \quad \frac{\Delta P \times A \times S}{d \times \sqrt{ } \mathrm{MW}}
$$

1. P: Partial pressure differences
2. A: Surface area for gas exchange
3. d: Diffusion distance
4. MW: Molecular weight and (S)solubility of gas
O_{2} has lower molecular weight than CO_{2}
But CO_{2} is 24 times more soluble than O_{2}
Net result: CO_{2} diffusion approx. 20 times faster than O_{2} diffusion

Cont....Factors affecting diffusion across the respiratory membrane

- $S / \sqrt{ } M W$ is called the diffusion coefficient of the gas.

$$
\begin{gathered}
\text { For } \quad \text { Oxygen }=1.0 \quad \text { carbon dioxide }=20.0 \quad \text { nitrogen } \\
=0.53
\end{gathered}
$$

The relative rates at which different gases at the same pressure level will diffuse are proportional to their diffusion coefficient.

Composition of respiratory air

Composition of inhaled air
$7996=$ nitrocen
20% oxyen
trace $=$ carton dioxide

Partial Pressure of O2 and CO2

- Oxygen concentration in the atmosphere is 21% So PO 2 in atmosphere $=760 \mathrm{mmHg} \times 21 \%=160$ mmHg .
- This mixes with "old" air already present in alveolus to arrive at PO 2 of 104 mmHg in alveoli.
- Carbon dioxide concentration in the atmosphere is 0.04% So PCO2 in atmosphere $=760 \mathrm{mmHg} \times 0.04 \%=0.3 \mathrm{~mm}$ Hg
- This mixes with high CO 2 levels from residual volume in the alveoli to arrive at PCO 2 of 40 mmHg in the alveoli.

Partial Pressures of Gases in Inspired Air and Alveolar Air

Copyright $\&$ The MoGraw-Hill Companies, Inc. Permission required for reproduction or display.

$\mathrm{PO}_{2}=160$
Alveolus
$\mathrm{PcO}_{2}=0.3$

PO2 and PCO2 in air, lung and tissues

Figure 35-1.

 All rights reserued.
Summary of PO_{2}, and PQO_{2} values in air, lungs, blood, and tissues, graphed to emphasize the fact that both O_{2} and CO_{2} diffuse "downhill" along gradients of decreasing partial pressure. (Redrawn and reproduced, with permission, from Kinney〕M: Transport of carbon dioxide in blood. Anesthesiology 1960;21:615.)

PO2 and PCO2 in various potions of normal expired air

FIGURE 39-6

Oxygen and carbon dioxide partial pressures in the various portions of normal expired air.

O 2 and CO 2 concentration in the alveoli

- At resting condition 250 ml of oxygen enter the pulmonary capillaries/min at ventilatory rate of 4.2 L/min.
- During exercise 1000 ml of oxygen is absorbed by the pulmonary capillaries per minute, the rate of alveolar ventilation must increase 4 times to maintain the alveolar PO2 at the normal value of 104 mmHg .
- Normal rate of CO2 excretion is $200 \mathrm{ml} / \mathrm{min}$, at normal rate of alveolar ventilation of $4.2 \mathrm{~L} / \mathrm{min}$.

Oxygen and Carbon dioxide Transport

Dr.Aida Korish Associate Prof.PHysiology

Objectives

1. Understand the forms of oxygen transport in the blood, the importance of each.
2. Differentiate between O 2 capacity, O 2 content and O 2 saturation.
3. Describe (Oxygen- hemoglobin dissociation curve)
4. Define the P50 and its significance.
5. How DPG, temperature, H^{+}ions and PCO_{2} affect affinity of O_{2} for Hemoglobin and the physiological importance of these effects.
6. Describe the three forms of carbon dioxide that are transported in the blood, and the chloride shift.

Forms of $\mathbf{O 2}$ transport

Transport of O 2 and CO 2 in the blood and body fluids

- O_{2} is mostly transported in the blood bound to hemoglobin
- If the $\mathrm{P}_{\mathrm{O}_{2}}$ increases Hb binds O_{2}
- If $\mathrm{P}_{\mathrm{O} 2}$ decreases Hb releases O_{2}
- O2 binds to the heme group on hemoglobin, with 4 oxygens /Hb

Terminology

O_{2} content: amount of O_{2} in blood ($\mathrm{mL} \mathrm{O} \mathrm{O}_{2} / 100 \mathrm{~mL}$ blood)
O_{2}-binding capacity: maximum amount of O_{2} bound to hemoglobin ($\mathrm{mL} \mathrm{O}_{2} / 100 \mathrm{~mL}$ blood) measured at 100% saturation.

Percent saturation: \% of heme groups bound to O_{2}

$$
\% \text { saturation of } \mathrm{Hb}=\frac{\text { oxygen content }}{\text { oxygen capacity }} \times 100
$$

Dissolved O_{2} : Unbound O_{2} in blood ($\mathrm{mL} \mathrm{O}_{2} / 100 \mathrm{~mL}$ blood).

Cont...transport of oxygen in arterial blood

- When blood is 100% saturated with O2: each gram of Hb carry 1.34 ml O 2 So O 2 content $=15 \mathrm{~g} \mathrm{Hb}$ x $1.34 \mathrm{O} 2=20 \mathrm{ml}$. But when the blood is only 97% saturated with O 2 :each 100 ml blood contain 19.4 ml O 2).
- Amount of oxygen released from the hemoglobin to the tissues is 5 ml O 2 per each 100 ml blood. So O 2 content in venous blood $=19.4-5=14.4 \mathrm{ml}$.
- During strenuous exercise the oxygen uptake by the tissue increases 3 folds so 15 ml O 2 is given / 100 ml blood So O 2 content in venous blood $=19.4-15=4.4 \mathrm{ml} \mathrm{O} 2 / 100 \mathrm{ml}$ blood.
At rest tissues consume $250 \mathrm{ml} \mathrm{O} 2 / \mathrm{min}$ and produce 200ml CO2

Oxygen transport in Blood

- 3% dissolved in plasma
- 97% bound to hemoglobin (oxyhemoglobin)
- Higher PO2 results in greater Hb saturation.
- The relation between PO2 and $\mathrm{Hb}-\mathrm{O} 2$ is not linear. The curve is called Oxyhemoglobin Saturation Curve
- Which is S- shaped or sigmoid

Oxyhemoglobin Dissociation Curve

Copyright © The MoGraw-Hill Companies, Inc. Permission required for reproduction or display-
Percent oxyhemoglobin saturatioin

Factors that shift the $\mathrm{O} 2-\mathrm{Hb}$ dissociation curve

- The position of the dissociation curve can be determined by measuring the P50
- P50: The arterial PO2 at which 50% of the Hb is saturated with O 2 , normally $\mathrm{P} 50=$ 26.5
- Decreased P50 means increased affinity of Hb to O 2 or shift of the curve to left
- Increased P50 means decreased affinity or shift of the curve to right


```
FIGURE 40-10
```

Shift of the oxyenthemomolbind discocation curee to the right by increases in (1) hydrofen ions, (2) CO, (3) empreature, or (4) 23: diphosphodyyerate (DPG)

Oxyhemoglobin Dissociation Curve

The Rt and Lt shifts:

- Rt shift means the oxygen is unloaded to the tissues from Hb , while Lt shift means loading or attachment of oxygen to Hb .
Increased 2,3DPG, $H+$, Temperature , PCO2 shift the curve to right.
- 2,3DPG is synthesized in RBCs from the glycolytic pathway, it binds tightly to reduced Hb . increased 2,3 DPG facilitate the oxygen release and shifts the dissociation curve to Rt.
- 2,3 DPG increases in the RBCs in anemia and hypoxemia, and thus serves as an important adaptive response in maintaining tissue oxygenation
- Fetal Hb: has a P50 of 20 mmHg in comparison to 27 mmHg of adult Hb .

Effect of carbon dioxide and hydrogen ions on the curve (Bohr effect)
At lung movement of CO2 from blood to alveoli will decrease blood CO2 \& $\mathrm{H}+\rightarrow$ shift the curve to left and increase O 2 affinity to Hb allowing more O 2 transport to tissues

At tissues: the reverse occur

Bohr Effect

(b)

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Shift of dissociation curve during exercise

- Exercise increases Temp, H+, 2,3 DPG and shift the curve to Rt.
- Utilization Coefficient The percentage of the blood that gives up its oxygen as it passes through the tissues capillaries is called utilization coefficient.

$=\underline{\mathrm{O} 2}$ delivered to the tissues
 O2 content of arterial blood

- Normally at rest $=5 \mathrm{ml} / 20 \mathrm{ml}=25 \%$,
- during exercise it $=15 \mathrm{ml} / 20 \mathrm{ml}=75 \%-85 \%$

Transport of oxygen in the dissolved state.

- Only 3\% of O2 is transported in the dissolved state,
- at normal arterial PO 2 of 95 mmHg , about 0.29 ml of oxygen is dissolved in each 100 ml of blood.
- When the PO2 of the blood falls to 40 mmHg in tissue capillaries, only 0.12 of oxygen remains dissolved.
- i.e 0.17 ml of oxygen is normally transported in the dissolved state to the tissues per each 100 ml of blood

Combination of Hb with CO ----- displacement of oxygen

- CO combines with Hb at the same point on the Hb molecule as does oxygen,
it binds with Hb about 250 times as much as O 2 (affinity of Hb to CO is very high (250 times) that to O2.It causes Lt shift of the O2Hb curve.

Transport of carbon dioxide in the blood

Carbon dioxide is transported in three forms.

- Dissolved CO2 7\%
- bicarbonate ions 70 \%
- Carbaminohemoglobin (with Hb) 23%. Each 100 ml of blood carry 4 ml of CO2 from the tissues/min .

Formation of HCO3- \&Chloride shift

The Haldane effect

- When oxygen binds with hemoglobin, carbon dioxide is released- to increase CO 2 transport
- Binding of Hb with O 2 at the lung causes the Hb to become a stronger acid and , this in turn displaces CO 2 from the blood and into the alveoli
- Change in blood acidity during CO2 transport. Arterial blood has a PH of 7.41 that of venous blood with higher PCO2 falls to 7.37 (i.e change of 0.04 unit takes place)

Respiratory Exchange ratio (Respiratory Quotient)

$R=$ Rate of carbon dioxide output
Rate of oxygen uptake

- Normally it is $4 / 5=82 \%$
- When Carbohydrate diet is used

$$
R=1
$$

- When fats only is used $R=0.7$
- A person on normal diet $R=0.825$

