Gas Transfer (Diffusion of O2 and CO2)

Dr.Aida Korish Associate Prof.PHysiology

Objectives

- 1-Define partial pressure of a gas, how is influenced by altitude.
- 2- Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law)
- 3- Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law)
- 4- Describe the factors that determine the concentration of a gas in a liquid.
- 5- Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).
- 6- Knew the various factors determining gas transfer: Surface area, thickness, partial pressure difference, and diffusion coefficient of gas
- 7- State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

Gas exchange through the respiratory membrane

- After ventilation of the alveoli with fresh air the next step is the process called Diffusion of oxygen and carbon dioxide.
- The rate of diffusion of each of these gases is directly proportional to the pressure caused by this gas alone which is called the partial pressure of the gas
- Pressure is caused by the constant impact of kinetically moving molecules against a surface.

Factors affecting gas diffusion

$$\begin{array}{ccc} D & \alpha & \underline{APXAXS} \\ & d \times \sqrt{MW} \end{array}$$

- 1. P: Partial pressure differences
- 2. A: Surface area for gas exchange
- 3. d: Diffusion distance
- 4. MW: Molecular weight and (S)solubility of gas

O₂ has lower molecular weight than CO₂
But CO₂ is 24 times more soluble than O₂
Net result: CO₂ diffusion approx. 20 times faster than O₂ diffusion

Cont....Factors affecting diffusion across the respiratory membrane

• S/\sqrt{MW} is called the diffusion coefficient of the gas.

```
For Oxygen = 1.0 carbon dioxide =20.0 nitrogen =0.53.
```

The relative rates at which different gases at the same pressure level will diffuse are proportional to their diffusion coefficient.

Composition of respiratory air

Partial Pressure of O2 and CO2

- Oxygen concentration in the atmosphere is 21%

 So PO2 in atmosphere = 760 mmHg x 21% = 160 mmHg.
- This mixes with "old" air already present in alveolus to arrive at PO2 of 104 mmHg in alveoli.
- Carbon dioxide concentration in the atmosphere is 0.04% So PCO2 in atmosphere =760 mmHg x 0.04% = 0.3 mm Hg
- This mixes with high CO2 levels from residual volume in the alveoli to arrive at PCO2 of 40 mmHg in the alveoli.

Partial Pressures of Gases in Inspired Air and Alveolar Air

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Insert fig. 16.20 Inspired air Alveolar air H₂O Variable 47 mmHg CO2 000.3 mmHg 40 mmHg 02 105 mmHg 159 mmHg N_2 601 mmHg **568 mmHg** Total 760 **760 mmHg** mmHg pressure

PO2 and PCO2 in air, lung and tissues

Figure 35-1.

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Summary of PO₂ and PCO₂ values in air, lungs, blood, and tissues, graphed to emphasize the fact that both O₂ and CO₂ diffuse "downhill" along gradients of decreasing partial pressure. (Redrawn and reproduced, with permission, from Kinney JM: Transport of carbon dioxide in blood. Anesthesiology 1960;21:615.)

PO2 and PCO2 in various potions of normal expired air

Oxygen and carbon dioxide partial pressures in the various portions of normal expired air.

O2 and CO2 concentration in the alveoli

- At resting condition 250 ml of oxygen enter the pulmonary capillaries/min at ventilatory rate of 4.2 L/min.
- During exercise 1000 ml of oxygen is absorbed by the pulmonary capillaries per minute, the rate of alveolar ventilation must increase 4 times to maintain the alveolar PO2 at the normal value of 104 mmHg.
- Normal rate of CO2 excretion is 200 ml/min, at normal rate of alveolar ventilation of 4.2 L/min.

Oxygen and Carbon dioxide Transport

Dr.Aida Korish Associate Prof.PHysiology

Objectives

- 1. Understand the forms of oxygen transport in the blood, the importance of each.
- 2. Differentiate between O2 capacity, O2 content and O2 saturation.
- 3. Describe (Oxygen-hemoglobin dissociation curve)
- 4. Define the P50 and its significance.
- How DPG, temperature, H⁺ ions and PCO₂ affect affinity of O₂ for Hemoglobin and the physiological importance of these effects.
- 6. Describe the three forms of carbon dioxide that are transported in the blood, and the chloride shift.

Forms of O2 transport

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Transport of O2 and CO2 in the blood and body fluids

- ▶ O₂ is mostly transported in the blood bound to hemoglobin
- If the P_{O_2} increases Hb binds O_2
- ▶ If P_{O2} decreases Hb releases O₂
- O2 binds to the heme group on hemoglobin, with 4 oxygens /Hb

Terminology

 O_2 content: amount of O_2 in blood (mL $O_2/100$ mL blood)

O₂-binding capacity: maximum amount of O₂ bound to hemoglobin (mL O₂/100 mL blood) measured at 100% saturation.

Percent saturation: % of heme groups bound to O₂

% saturation of Hb = <u>oxygen content</u> x 100 oxygen capacity

Dissolved O_2 : Unbound O_2 in blood (mL $O_2/100$ mL blood).

Cont...transport of oxygen in arterial blood

- When blood is 100% saturated with O2: each gram of Hb carry 1.34 ml O2 So O2 content = 15g Hb x 1.34 O2=20 ml.

 But when the blood is only 97% saturated with O2:each 100 ml blood contain 19.4 ml O2).
- Amount of oxygen released from the hemoglobin to the tissues is 5ml O2 per each 100ml blood. So O2 content in venous blood =19.4-5= 14.4 ml.
- During strenuous exercise the oxygen uptake by the tissue increases 3 folds so 15 ml O2 is given /100 ml blood. So O2 content in venous blood =19.4-15=4.4 ml O2 /100ml blood.

At rest tissues consume 250 ml O2 /min and produce 200ml CO2

Oxygen transport in Blood

- 3% dissolved in plasma
- 97% bound to hemoglobin (oxyhemoglobin)
- Higher PO2 results in greater Hb saturation.
- The relation between PO2 and Hb-O2 is not linear. The curve is called Oxyhemoglobin Saturation Curve
- Which is S- shaped or sigmoid

Oxyhemoglobin Dissociation Curve

Factors that shift the O2- Hb dissociation curve

- The position of the dissociation curve can be determined by measuring the P50
- ▶ <u>P50:</u> The arterial PO2 at which 50% of the Hb is saturated with O2, normally P50= 26.5
- Decreased P50 means increased affinity of Hb to O2 or shift of the curve to left
- Increased P50 means decreased affinity or shift of the curve to right

Oxyhemoglobin Dissociation Curve

The Rt and Lt shifts:

Rt shift means the oxygen is unloaded to the tissues from Hb, while Lt shift means loading or attachment of oxygen to Hb.

Increased 2,3DPG, H+, Temperature, PCO2 shift the curve to right.

- > 2,3DPG is synthesized in RBCs from the glycolytic pathway, it binds tightly to reduced Hb. increased 2,3 DPG facilitate the oxygen release and shifts the dissociation curve to Rt.
- ▶ 2,3 DPG increases in the RBCs in anemia and hypoxemia, and thus serves as an important adaptive response in maintaining tissue oxygenation
- ▶ Fetal Hb: has a P50 of 20 mmHg in comparison to 27 mmHg of adult Hb.

Effect of carbon dioxide and hydrogen ions on the curve (Bohr effect)

At lung movement of CO2 from blood to alveoli will decrease blood CO2 &H+ →shift the curve to left and increase O2 affinity to Hb allowing more O2 transport to tissues

At tissues: the reverse occur

Bohr Effect

(b)
Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Shift of dissociation curve during exercise

- Exercise increases Temp, H+, 2,3 DPG and shift the curve to Rt.
- Utilization Coefficient The percentage of the blood that gives up its oxygen as it passes through the tissues capillaries is called *utilization coefficient*.
 - O2 delivered to the tissues
 O2 content of arterial blood
- Normally at rest = 5ml/20 ml = 25%,
- during exercise it = 15 ml/20 ml = 75 % 85%

Transport of oxygen in the dissolved state.

- ▶ Only 3% of O2 is transported in the dissolved state,
- at normal arterial PO2 of 95 mmHg, about 0.29 ml of oxygen is dissolved in each 100ml of blood.
- When the PO2 of the blood falls to 40 mmHg in tissue capillaries, only 0.12 of oxygen remains dissolved.
- i.e 0.17 ml of oxygen is normally transported in the dissolved state to the tissues per each 100 ml of blood

Combination of Hb with CO ---- displacement of oxygen

- CO combines with Hb at the same point on the Hb molecule as does oxygen,
- it binds with Hb about 250 times as much as O2 (affinity of Hb to CO is very high (250 times) that to O2. It causes Lt shift of the O2-Hb curve.

Transport of carbon dioxide in the blood

Carbon dioxide is transported in three forms.

- Dissolved CO2 7%
- bicarbonate ions 70 %
- Carbaminohemoglobin (with Hb) 23%.

 Each 100 ml of blood carry 4 ml of CO2 from the tissues/min.

Formation of HCO3- &Chloride shift

In Tissues

In Pulmonary capillaries

The Haldane effect

- When oxygen binds with hemoglobin, carbon dioxide is released- to increase CO2 transport
- Binding of Hb with O2 at the lung causes the Hb to become a stronger acid and, this in turn displaces CO2 from the blood and into the alveoli
- Change in blood acidity during CO2 transport.

Arterial blood has a PH of 7.41 that of venous blood with higher PCO2 falls to 7.37 (i.e change of 0.04 unit takes place)

Respiratory Exchange ratio (Respiratory Quotient)

R= Rate of carbon dioxide output
Rate of oxygen uptake

- Normally it is 4/5= 82%
- When Carbohydrate diet is used R = 1
- When fats only is used R=0.7
- A person on normal diet R=0.825