| Criteria for diagnosis of MI | Features of an ideal cardiac marker (*troponin) | | |--|---|--| | To diagnose MI, the presence of at least two of the following characteristics is required: 1. Typical heart attack symptoms 2. Characteristic rise and fall pattern of a cardiac marker in plasma: • Rise and gradual fall of cardiac troponins • More rapid rise and fall of CK-MB 3. Typical ECG pattern | High concentration in the myocardium High sensitivity (detected in low concentration at early stages) High specificity (for cardiac tissue damage) Rapid release into plasma Good prognostic value (strong correlation between plasma level and extent of myocardial injury) Easily measured | | | · | | | | Troponin | CK-MB | Myoglobin | hFABP | |---|--|--|--| | structural proteins in cardiac myocytes and skeletal muscle "cardiac troponins (cTn) are structurally different from muscle troponins" | it rises and falls transiently after MI More than 5 % is indicative for MI | non-specific because it is elevated in: ★ Muscle disease/injury ★ Acute and chronic renal failure sensitive marker of | cytosolic protein involved
in fatty acid transport &
metabolism Appears 30 min after
acute ischemia early marker for detecting
acute ischemia prior to | | Specific for Mi | sensitive & specific for wif | cardiac damage | necrosis | | | Appear in 3-10 h after MI Returns to normal within | Appears early (within | BNP | | Remain elevated for up to
10 days | Returns to normal within 2-3 days | 1-4 hours) | produced by the
ventricles in response to | | After a MI, cytosolic troponins are released rapidly (first few hours) Structurally bound troponins are released later for several days | Useful for diagnosis of re-infarction Not highly specific (it is elevated in skeletal muscle damage & in atheletes) | early marker of MI | myocardial stretching and ventricular dysfunction after MI marker for detecting CHF "differential diagnosis of pulmonary diseases and CHF" |