

Sympatholytic & adrenergic blockers \OX-receptor Antagonists

Prof. Hanan HagarPharmacology Unit
College of Medicine

Classification of sympatholytics

- > Adrenergic neuron blockers
 - Formation of False Transmitters
 e.g. α-Methyl dopa
 - Depletion of Storage sitese.g. reserpine
 - Inhibition of release & enhance uptakee.g. guanethidine
 - Stimulation of presynaptic α_2 receptors e.g. clonidine and α -Methyl dopa
- > Adrenergic receptor blockers

Classification of sympatholytics

α-Methyl dopa

- Forms false transmitter that is released instead of NE
- Acts centrally as α₂ receptor agonist to inhibit NE release
- Drug of choice in the treatment of hypertension in pregnancy (pre-eclampsia - gestational hypertension).

Clonidine

- Acts directly as α_2 receptor agonist to inhibit NE release
- suppresses sympathetic outflow activity from the brain.
- Little Used as Antihypertensive agent due to rebound hypertension upon abrupt withdrawal.
- Apraclonidine is used in open angle glaucoma as eye drops.
 acts by decreasing aqueous humor formation.

1. Adrenergic Neuron Blockers [SYMPATHOLYTICS] 1. METHYLDOPA α-methyl tyrosine Norepinephrine (NE) Na **Tyrosine → False Transmitters Dopa**←Tyrosine **Antihypertensive in** degraded monoamines 2. RESERPINE **PREGNANCY** MAO **→Depletes Stores** α_2 mitochondria NE 4. Clonidine Gaunthidine Presynaptic α_2 agonist **Enhance Uptake** synaptic cleft noradrenaline receptor 2. Adrenoceptor Blockers [ADRENOLYTICS]

Adrenergic receptor blockers

Adrenergic receptor blockers or adrenolytics

They block sympathetic actions by antagonizing

- α-receptor antagonists or
- B-receptor antagonists

Classification of α -receptor Antagonists

Non-selective antagonists

e.g. phenoxybenzamine & phentolamine.

 α_1 -selective antagonists

e.g. prazosin, doxazosin.

 α_2 -selective antagonists

e.g. yohimbine

Non-Selective α - Adrenoceptor Antagonists

Phenoxybenzamine:

Irreversibl block of both α_1 and α_2 receptors


Long-acting (24 hrs).

Phentolamine:

reversible blocking of a1 & a2 receptors.

Short acting (4 hrs).

Both drugs cause:

- 1) Postural hypotension.
- 2) Decrease peripheral vascular resistance
- 3) Increase cardiac output (α2 block).
- 4) Reflex tachycardia.
- Both drugs can precipitate arrhythmias and angina and are contra-indicated in: patients with decreased coronary perfusion.

Reflex tachycardia due to the fall in B.P, mediated by baroreceptor reflex and due to block $\alpha 2$ in heart.

Therapeutic Uses:

□ Pheochromocytoma: Before surgical removal to protect against hypertensive crisis.

Adverse Effects of non-Selective \alpha - Adrenoceptor Antagonists:

- Postural hypotension
- Tachycardia
- Headache
- Nasal stuffiness or congestion
- Vertigo & drowsiness
- Male sexual dysfunction (inhibits ejaculation).

Selective α_1 - Antagonists

Prazosin & doxazosin.

Prazosin (short half-life)

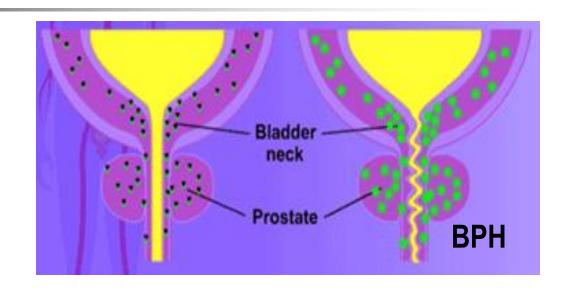
Doxazosin, terazosin (long half life)

 α_1 -antagonists cause :

- Vasodilatation due to relaxation of arterial and venous smooth muscles
- * Fall in arterial pressure with less tachycardia than with non-selective α blockers

Therapeutic Uses:

- Benign prostatic hyperplasia.
- Treatment of hypertension with prostate enlargement.
- Reynaud's disease.


Selective $\alpha 1A$ —antagonist Tamsulosin

- a selective α1A—antagonist.
- * α1A receptors present in prostate
- * Tamsulosin is used in treatment of benign prostatic hypertrophy (BPH).
- *** Tamsulosin produce:** relaxation of smooth muscles of bladder neck & prostate →improve urine flow.
- * Has minimal effect on blood pressure.

Tamsulosin

Relaxation of bladder neck can improve urine flow

Adverse effects of α 1- Antagonists

as before with non selective but to a lesser degree

α_2 -selective antagonists

- e.g. yohimbine
- Used as aphrodisiac in the treatment of erectile dysfunction.
- Increase nitric oxide released in the corpus cavernosum thus producing vasodilator action and contributing to the erectile process.