Antiarrhythmic Drugs

Prof. Abdulrahman Almotrefi

Cardiovascular Pharmacology

- Antiarrhythmic drugs
- Drugs in heart failure
- Antihypertensive drugs
- Antianginal drugs
- Antihyperlipidemic drugs

Learning objectives

By the end of this lecture, students should be able to:

- Understand definition of arrhythmias and their different types
- describe different classes of Antiarrhythmic drugs and their mechanism of action
- understand their pharmacological actions, clinical uses, adverse effects and their interactions with other drugs.

Cardiac Conduction System

CARDIAC CONDUCTION SYSTEM

- S.A. node
- Inter-nodal pathways
- A.V. node
- Bundle of His and branches
- Purkinje fibers

Electrocardiogram (ECG)

Electrical and Mechanical Events

CARDIAC ACTION POTENTIAL Non-pacemaker (ventricular muscle)

CARDIAC ACTION POTENTIAL Pacemaker (SA node)

Time (ms)

WHAT IS ARRHYTHMIA?

An abnormality in the :

rate high= tachycardia

low = bradycardia

Heart Rate	Rhythm	P Wave	PR interval (in seconds)	QRS (in seconds)
< 60 bpm	Regular	Before each QRS, identical	.12 to .20	<.12

WHAT IS ARRHYTHMIA?

- An abnormality in the :
 - rate

high= tachycardia low = bradycardia

regularity Extrasystoles (PAC, PVC)

Multifocal PVC's: more than one shape

Heart Rate	Rhythm	P Wave	PR interval (in seconds)	QRS (in seconds)
A: 350-650 bpm V: Slow to rapid	Irregular	Fibrillatory (fine to course)	N/A	<.12

WHAT IS ARRHYTHMIA?

- An abnormality in the :
 - rate high= tachycardia

low = bradycardia

- regularity extrasystoles
- site of origin ... ectopic pacemakers
- or disturbance in conduction

Therapeutic use of antiarrhythmic drugs

Restore normal rhythm & conduction

Maintenance of normal rhythm

Prevention of more serious arrhythmias

How antiarrhythmic drugs produce these effects?

- Slow conduction velocity
- Altering the excitability of cardiac cells by prolonging the effective refractory period
- Suppressing ectopic pacemaker activity by inhibiting phase 4 slow depolarization

CLASSIFICATION OF ANTIARRHYTHMIC DRUGS

Vaughn Williams classification

CLASS Na+ channel blockers (membrane stabilizing drugs) **CLASS II**: **β- adrenoceptor blockers CLASS III:** Drugs that prolong action potential duration **CLASS IV:** Calcium channel blockers

<u>CLASS I</u>

- Drugs that block the influx of Na ions through Na channels \checkmark 1- decrease the rate of rise of
- rapid depolarization (Phase O)
- 2- decrease phase 4 slow diastolic depolarization (suppress pacemaker activity)

(membrane stabilizing effect)

Fast-Response Action Potential (e.g., ventricular myocyte)

- Sub classified according to their effect on action potential duration :
- la : prolong action potential duration
- Ib : shorten action potential duration
- Ic : no effect on action potential duration

Ia : prolong action potential duration e.g. Quinidine Procainamide

CLASS I a QUINIDINE

pharmacological actions : Cardiac (direct) :

1- Membrane stabilizing effect

2- Blocking of K channels
 ↓
 prolongation of action potential duration
 (refractory period)

3- ECG changes:

- prolongs P-R and Q-T interval
- widens QRS complex

CLASS I a QUINIDINE

pharmacological actions :

Actions on A.N.S. (indirect) :

- 1- Anticholinergic effect ↓
- Increase conduction through the A.V. node
 - (risk of ventricular tachycardia)
- 2- α-adrenergic blocking effect

may cause vasodilatation & reflex sinus tachycardia (seen more after I.V. dose)

CLASS I a

QUINIDINE

Therapeutic uses:

- common uses: atrial flutter & fibrillation
- can be used for ventricular tachycardia
- maintaining sinus rhythm after D.C. cardio version

Adverse effects :

quinidine syncope: episodes of fainting due to torsades de pointes (twisting of the spikes) developing at therapeutic plasma levels

Torsades de pointes

- may terminate spontaneously or lead to

fatal ventricular fibrillation

CLASS I a QUINIDINE

Adverse effects :

- Anticholinergic adverse effects:
- Dry mouth
- Blurred vision
- Urinary retention
- constipation
- Hypotension
 - due to depressing contractility & vasodilatation

GIVEN ORALLY (Rarely given I.V.)

PROCAINAMIDE

Similar to quinidine except :

1-less toxic on the heart...

can be given I.V.

2-more effective in ventricular than in

atrial arrhythmias

3 - No anticholinergic or α -blocking actions

Adverse effects:

- In long term therapy it causes reversible lupus erythematosus-like syndrome
- Hypotension
- Torsades de pointes
- Hallucination & psychosis

Shorten action potential duration

 e.g.
 Lidocaine
 Mexiletine

CLASS Ib LIDOCAINE

- **Therapeutic uses :**
- treatment of <u>emergency</u> ventricular arrhythmias
- e.g. :
 - 1 during surgery
 - 2 following acute myocardial infarction
- NOT effective in atrial arrhythmias
- NOT effective orally (3% bioavailability)
- given I.V. bolus or slow infusion
- t_{1/2} = 2 hours

CLASS Ib LIDOCAINE

Adverse effects:

- hypotension
- similar to other local anesthetics, causes CNS adverse effects such as:
 - paresthesia
 - tremor
 - dysarthria (slurred speech)
 - tinnitus
 - confusion
 - convulsions

CLASS Ib MEXILETINE

- EFFECTIVE ORALLY
- **Therapeutic uses :**
- 1- ventricular arrhythmia
- 2- digitalis-induced arrhythmias
- t_{1/2} = 10 hours

ADVERSE EFFECTS :

- 1- nausea, vomiting
- 2- tremor, drowsiness, diplopia
- 3- arrhythmias & hypotension

 have no effect on action potential duration

> e.g. Flecainide

- **Therapeutic uses :**
- supraventricular arrhythmias
- Wolff-Parkinson-White syndrome
- very effective in ventricular arrhythmias, but very high risk of proarrhythmia
- should be reserved for resistant arrhythmias

Wolff-Parkinson-White syndrome

 Pre-excitation of the ventricles due to an accessory pathway known as the Bundle of Kent.

CLASS IC FLECAINIDE

Adverse effects:

- 1- proarrhythmia
- 2- CNS :

dizziness, tremor, blurred vision, abnormal taste sensations, paraesthesia

3- heart failure due to -ve inotropic effect

β- ADRENOCEPTOR BLOCKERS pharmacological actions :

block β_1 - receptors in the heart

reduce the sympathetic effect on the heart

- 1 decrease automaticity of S.A. node and ectopic pacemakers
- 2 prolong refractory period (slow conduction) of the A.V node

CLASS II DRUGS β- ADRENOCEPTOR BLOCKERS

- **Therapeutic uses :**
- 1- atrial arrhythmias associated with emotion:
 - e.g.: after exercise
 - thyrotoxicosis
- **2- WPW**

3- digitalis-induced arrhythmias

CLASS II DRUGS β- ADRENOCEPTOR BLOCKERS

- **Therapeutic uses :**
 - **Esmolol :**
 - very short acting (half-life = 9 min.)
 - given I.V. for rapid control of ventricular rate in patients with atrial flutter or fibrillation

Propranolol, Atenolol, Metoprolol :

 used in patients who had myocardial infarction to reduce incidence of sudden death due to ventricular arrhythmias

 Prolong the action potential duration and refractory period

Prolong phase 3 repolarization

AMIODARONE

pharmacological actions :

- prolongs action potential duration and therefore prolongs refractory period (Main effect)
- additional class Ia, II & IV effects
- vasodilating effects
- (due to its α & β -adrenoceptor blocking effects and its calcium channel blocking effects)

AMIODARONE

Therapeutic uses :

1- main use : serious resistant ventricular arrhythmias

2-maintenance of sinus rhythm after D.C. cardio version

3- resistant supraventricular arrhythmias (e.g. WPW)

AMIODARONE

Adverse effects:

- bradycardia & heart block, heart failure
- pulmonary fibrosis
- hyper- or hypothyroidism
- photodermatitis & skin deposits

(patients should avoid exposure to the sun)

- may cause bluish discoloration of the skin

AMIODARONE

Adverse effects:

- CNS: tremor, headache, ataxia, paresthesia
- constipation
- corneal micro deposits
- hepatocellular necrosis
- peripheral neuropathy

AMIODARONE

Pharmacokinetics:

- extremely long $t_{1/2} = 13 103 \text{ DAYS}$
- metabolized to its major <u>active</u> metabolite
 N-desethylamiodarone by cytochrome P450 3A4
 and CYP2C8
- eliminated primarily by hepatic metabolism
- cross placenta and appear in breast milk

AMIODARONE

- **Drug Interactions:**
- 1 As amiodarone is metabolized by CYP3A4 & CYP2C8, drugs (or substances) that inhibit these enzymes

increase serum concentration of amiodarone

- e.g. : Loratadine
 - Ritonavir
 - Trazodone
 - Cimetidine
 - **Grapefruit juice**

AMIODARONE

Drug Interactions:

2 - drugs that are inducers of these enzymes
 ↓

decrease serum concentration of amiodarone e.g. : Rifampin

3 - Reduces clearance of several drugs e.g. quinidine, warfarin, procaiamide, flecainide

PURE CLASS III Ibutilide

- Given by rapid I.V. infusion
- Used for the acute conversion of atrial flutter or fibrillation to normal sinus rhythm
- Causes QT interval prolongation

(may cause torsades de pointes)

Class 1V calcium channel blockers

Verapamil, Diltiazem

- main site of action is A.V.N & S.A.N cause:
 - slowing of conduction
 - prolongation of effective refractory period

Class 1V calcium channel blockers

- **Therapeutic uses :**
- 1- atrial arrhythmias

2- re-entry supraventricular arrhythmias e.g. WPW

3- NOT effective in ventricular arrhythmias

CLASS V

MISCELLENIOUS ANTIARRHYTHMIC DRUGS

ADENOSINE

DIGITALIS

ADENOSINE

- endogenous nucleoside

Mechanism of action :

- inhibits cAMP by binding to adenosine A1 receptors causing the following actions:
- 1 Opening of potassium channels (hyperpolarization)

Mechanism of action :

2 - decreasing conduction velocity mainly at AVN

(negative dromotropic effect)

3- inhibiting phase 4 pacemaker action potential (SAN)

(negative chronotropic effect)

ADENOSINE

- Therapeutic uses :
 Image: a lass than 10 sec.
- drug of choice for acute management of paroxysmal supraventricular tachycardia
- preferred over verapamil safer and does not depress contractility

ADENOSINE

Adverse effects:

- flushing in about 20% of patients
- shortness of breath and chest burning in 10% of patients (bronchospasm)
- brief AV block (contraindicated in heart block)

BRADYARRHYTHMIAS ATROPINE

- used in sinus bradycardia after myocardial infarction and in heart block in emergency heart block isoprenaline may
 - be combined with atropine (caution)

NONPHARMACOLOGIC THERAPY OF ARRHYTHMIAS

Implantable Cardiac Defibrillator (ICD)

- can automatically detect and treat fatal arrhythmias such as ventricular fibrillation

Thank you