Drug Therapy of Heart Failure

Prof. Abdulrahman Almotrefi

Learning objectives

By the end of this lecture, students should be able to:

 Describe the different classes of drugs used for treatment of acute & chronic heart failure and their mechanism of action

 Understand their pharmacological effects, clinical uses, adverse effects and their interactions with other drugs

HEART FAILURE

Inability of the heart to maintain an adequate cardiac output to meet the metabolic demands of the body

CAUSES OF HEART FAILURE

Symptoms of Heart failure

- Tachycardia
- Decreased exercise tolerance (rapid fatigue)
- Dyspnea (pulmonary congestion)
- Peripheral edema
- Cardiomegaly

↓ Force of contraction Low C.O. **↓** Carotid sinus firing ↓ Renal blood flow **Activate sympathetic system Activate renin-angiotensin-↑ Sympathetic discharge** Aldosterone system Ag. 11 Remodeling Salt & Water Vasoconstriction Retention **↑** Force of Volume expansion ↑ HR Cardiac .cont **Venous VC Arterial VC** ↑ Preload ↑ Preload ↑ Afterload

Pathophysiology of CHF

Factors affecting cardiac output and heart failure

1- Preload

2- Afterload

3- Cardiac contractility

Drugs used in the treatment of heart failure

I- Drugs that decrease preload

- 1 Diuretics
- 2 Aldosterone antagonists
- 3 Venodilators
- II- Drugs that decrease afterload
 - 1 Arteriodilators

Drugs used in the treatment of heart failure

III- Drugs that decrease both preload & afterload (Combined arteriolo- & venodilators)

- 1- Angiotensin converting enzyme (ACE) inhibitors
- 2- Angiotensin receptor antagonists
- 3- α₁-adrenoceptor antagonists
- 4- Direct vasodilators

Drugs used in the treatment of heart failure

- IV- Drugs that increase contractility
 - 1- Cardiac glycosides (digitalis)
 - 2- β- adrenoceptor agonists

3- Phosphodiesterase inhibitors

I- Drugs that decrease preload 1-Diuretics:

Mechanism of action in heart failure:

reduce salt and water retention

decrease ventricular preload and venous pressure

reduction of cardiac size

Improvement of cardiac performance

I- Drugs that decrease preload

1-Diuretics:

Chlorothiazide

- first-line agent in heart failure therapy
- used in volume overload (pulmonary and/ or peripheral edema)
- used in mild congestive heart failure

I- Drugs that decrease preload 1-Diuretics:

Furosemide

- a potent diuretic
- used for immediate reduction of pulmonary congestion & severe edema associated with :
 - acute heart failure
 - moderate & severe chronic failure

I- Drugs that decrease preload

2-Aldosterone antagonists:

Spironolactone

- nonselective antagonist of aldosterone receptor
- a potassium sparing diuretic used in congestive heart failure
- improves survival in advanced heart failure

Eplerenone

- a new selective aldosterone receptor antagonists

I- Drugs that decrease preload

3-Venodilators:

Nitroglycerine Isosorbide dinitrate

- used I.V. for severe heart failure when the main symptom is dyspnea due to pulmonary congestion
- dilates venous blood vessels and reduce preload

II- Drugs that decrease afterload

1- Arteriodilators:

Hydralazine

 used when the main symptom is rapid fatigue due to low cardiac output

reduce peripheral vascular resistance

III- Drugs that decrease both preload & afterload

1-Angiotensin converting enzyme (ACE) inhibitors:

- are now considered as first-line drugs for chronic heart failure along with diuretics
- first-line drugs for hypertension therapy

Angiotensin converting enzyme inhibitors MECHANISM OF ACTION

Pharmacokinetics:

Captopril, Enalapril and Ramipril

- rapidly absorbed from GIT after oral administration.
- food reduce their bioavailability

Enalapril, Ramipril

- prodrugs, converted to their active metabolites in the liver
- have long half-life & given once daily

Enalaprilat

- the active metabolite of enalapril
- given I.V. in hypertensive emergency

Adverse effects:

- 1- acute renal failure, especially in patients with renal artery stenosis
- 2- hyperkalemia, especially in patients with renal insufficiency or diabetes
- 3- severe hypotension in hypovolemic patients (due to diuretics, salt restriction or gastrointestinal fluid loss)

Adverse effects:

- 4- dry cough sometimes with wheezing
- 5- angioneurotic edema (swelling in the nose, throat, tongue, larynx)
- 6- dysgeusia (reversible loss or altered taste)

Contraindications:

 during the second and third trimesters of pregnancy (due to the risk of : fetal hypotension renal failure & malformations)

- renal artery stenosis

III- Drugs that decrease both preload & afterload

2- Angiotensin receptor blockers (ARBs):

Losartan, Valsartan, Irbesartan

Mechanism of action:

- block AT₁ receptors
- decrease action of angiotensin II

Useful Effects of ACE Inhibitors & ARBs In Heart Failure

- 1 Decrease peripheral resistance (Afterload)
- 2 Decrease Venous return (Preload)
- 3 Decrease sympathetic activity

(By blocking sympathetic nerve release & reuptake of norepinephrine)

4- Inhibit cardiac and vascular remodeling associated with chronic heart failure

Decrease in mortality rate

III- Drugs that decrease both preload & afterload

3- α-ADRENOCEPTOR BLOCKERS:

Prazosin

- block α- receptors in arterioles and venules
- reduce blood pressure by decreasing both afterload & preload which help heart failure patients

III- Drugs that decrease both preload & afterload

4- Direct acting vasodilators:

Sodium nitroprusside

- given I.V. for acute or severe heart failure
- acts immediately and effects lasts for 1-5 minutes

1- Cardiac glycosides (digitalis):

Digoxin
Pharmacological actions:

1- increase the force of myocardial contraction (+ve inotropic effect)

increase left ventricle emptying

increase cardiac output

1- Cardiac glycosides (digitalis):

Digoxin

2- Slow heart rate by vagal stimulation (-ve chronotropic effect)

Mechanism of action:

Inhibit Na+ / K+ ATPase enzyme
 (the sodium pump)

MECHANISM OF ACTION OF DIGOXIN

1- Cardiac glycosides (digitalis):

Digoxin

Therapeutic uses:

- Congestive heart failure
- Atrial arrhythmias:
 - Atrial flutter
 - Atrial fibrillation
 - Supraventricular tachycardia

1- Cardiac glycosides (digitalis):

Digoxin

Pharmacokinetics of digoxin:

- has narrow therapeutic index
- oral absorption: 40-80% (variable bioavailability)
- 85% is excreted unchanged in the urine

1- Cardiac glycosides (digitalis):
Digoxin
Adverse effects (Cardiac):

- digitalis-induced arrhythmias
 - extrasystoles
 - coupled beats (Bigeminal rhythm)
 - ventricular tachycardia or fibrillation
 - cardiac arrest

1- Cardiac glycosides (digitalis):

Digoxin

Adverse effects (non-cardiac):

GIT:

anorexia, nausea, vomiting, diarrhea (the earliest signs of toxicity)

CNS:

headache, visual disturbances, drowsiness

Treatment OF ADVERSE EFFECTS

IV- Drugs that increase contractility

1- Cardiac glycosides (digitalis):

Digoxin

Factors that increase toxicity:

- Renal diseases
- Hypokalemia
- Hypomagnesemia
- Hypercalemia

IV- Drugs that increase contractility

2- β-Adrenoceptor agonists:

Dobutamine

- Selective β₁ agonist
- Uses: Treatment of acute heart failure in cardiogenic shock

IV- Drugs that increase contractility

3- phosphodiesterase -III inhibitors:

Amrinone & Milrinone

Mechanism of action:

Inhibit phosphodiesterase -III (cardiac & B. Vessels)

inhibit cAMP degradation (↑ cAMP)

Increase cardiac dilatation of arteries & veins

Contractility (reduction of preload & afterload)

IV- Drugs that increase contractility 3- phosphodiesterase -III inhibitors :

Therapeutic uses:

- Milrinone is the PDE-III inhibitor in clinical use
- used only intravenously for management of acute heart failure
- not safe or effective in the longer (> 48 hours)
 treatment of patients with heart failure
- Amrinone not used now because it causes thrombocytopenia

IV- Drugs that increase contractility 3- phosphodiesterase -III inhibitors :

Adverse effects:

- nausea ,vomiting
- thrombocytopenia
- liver toxicity
- Enoximone & vesnarinone are new drugs in clinical trials

The use of β-adrenoceptor blockers in heart failure

 The elevated adrenergic activity in chronic heart failure patients cause structural remodeling of the heart (cardiac dilatation & hypertrophy)

β-blockers:

- reduce the progression of <u>chronic</u> heart failure
- not used in acute heart failure

The use of β-adrenoceptor blockers in heart failure

Mechanism of action:

β-blockers:

- 1- attenuate cardiac remodeling
- 2- slow heart rate, which allows the left ventricle to fill more completely
- 3- decrease renin release

reduce mortality & morbidity of patients with HF

The use of β-adrenoceptor blockers in heart failure

β-blockers:

- Second generation:

cardioselective (β₁-receptors)

e.g. Bisoprolol, Metoprolol

- Third generation:

have vasodilator actions (α-blocking effect)

e.g. Carvedilol, Nebivolol

Natriuretic Peptides

- BNP is secreted by the ventricular myocardium in response to stretch
- elevated BNP is associated with advanced heart failure (compensatory mechanism in HF)

Natriuretic Peptides

Nesiritide

- purified preparation of human BNP, manufactured by recombinant DNA technology
- increases cyclic-GMP in vascular smooth muscle, leading to smooth muscle relaxation, & reduction of preload and afterload
- indicated for the treatment of patients with acutely decompensated heart failure who have dyspnea at rest or with minimal activity

Management of chronic heart failure

- Reduce work load of the heart
 - Limit patient activity
 - Reduce weight
 - Control hypertension
- Restrict sodium
- Stop smoking

Heart Failure Functional Classification

NYHA Class	Symptoms	
	Cardiac disease, but no symptoms and no limitation in ordinary physical activity, e.g. no shortness of breath when walking, climbing stairs etc.	
II	Mild symptoms (mild shortness of breath and/or angina), slight limitation during ordinary activity.	
III	Marked limitation in activity due to symptoms, even during less-than-ordinary activity, e.g. walking short distances (20–100 m).Comfortable only at rest.	
IV	Severe limitations. Experiences symptoms even while at rest. Mostly bedbound patients.	

Management of chronic heart failure

	For Survival/Morbidity	For Symptoms
NYHA I	Continue ACE inhibitor/ARB if ACE inhibitor intolerant, continue aldosterone antagonist if post-MI add beta-blocker if post-MI	reduce / stop diuretic
NYHA II	ACE inhibitor as first-line treatment/ARB if ACE inhibitor intolerant add beta-blocker and aldosterone antagonist if post MI	+/- diuretic depending on fluid retention
NYHA III	ACE inhibitor plus ARB or ARB alone if ACE intolerant beta- blocker add aldosterone antagonist	+ diuretics + digitalis If still symptomatic
NYHA IV	Continue ACE inhibitor/ARB beta-blocker Aldosterone antagonist	+diuretics + digitalis + consider temporary inotropic support

Use of vasodilators

hydralazine and isosorbide dinitrate:

- should be considered black patients with advanced heart failure due to left ventricular systolic dysfunction in addition to standard therapy.

- should be considered patients who are intolerant of an angiotensin converting enzyme inhibitor and an angiotensin II receptor blocker due to renal dysfunction

Management of acute heart failure

