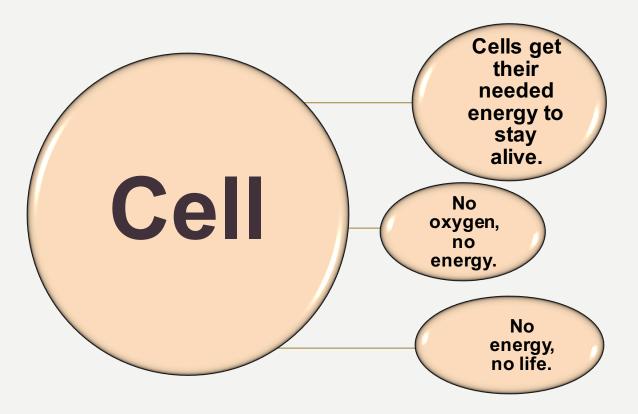


C A R D I O V A S C U L A R P H Y S I O L O G Y

SHOCK

DR. ABEER A. AL-MASRI

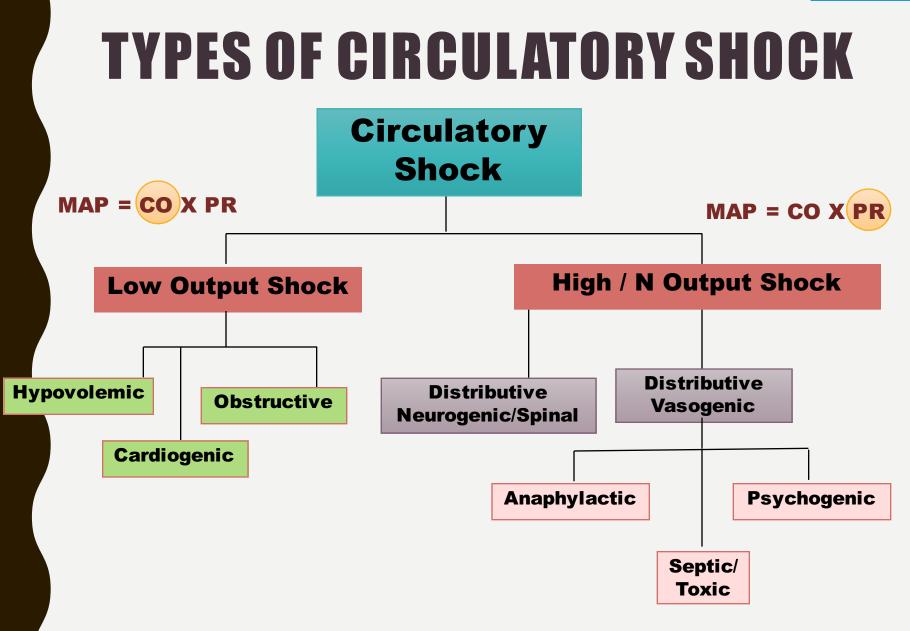
A. PROFESSOR & CONSULTANT CARDIOVASCULAR PHYSIOLOGIST FACULTY OF MEDICINE, KSU


LECTURE OUTCOMES

Define circulatory shock. Types & causes of shock.

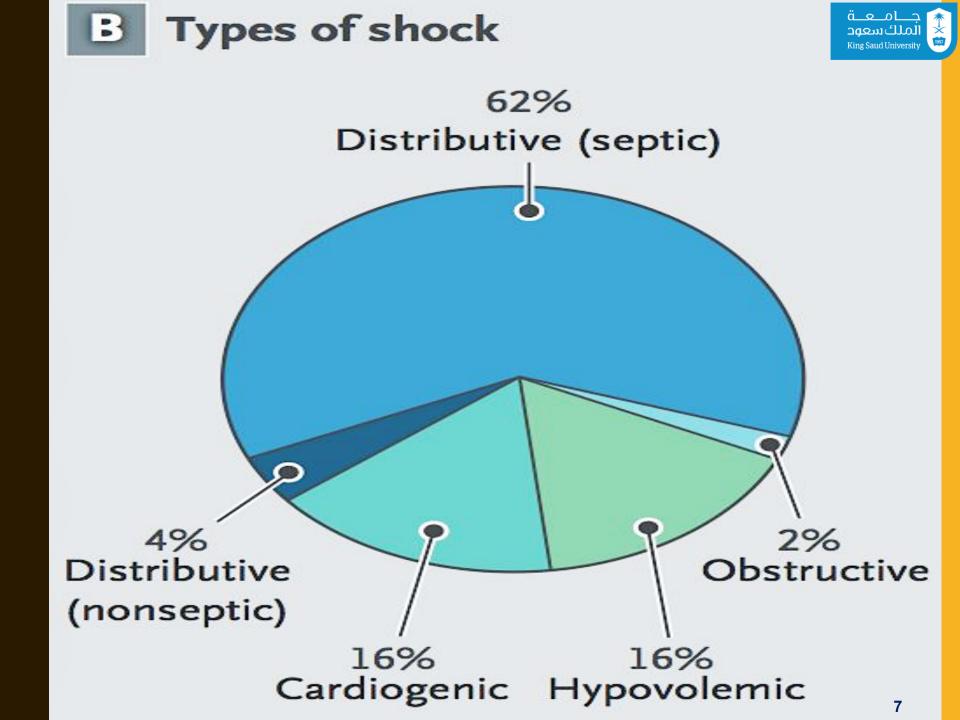
Body compensatory mechanisms during reversible phases of hemorrhagic shock. Mechanisms responsible for the irreversible phase of hemorrhagic shock.

BASIC UNIT OF LIFE



WHAT IS SHOCK ?

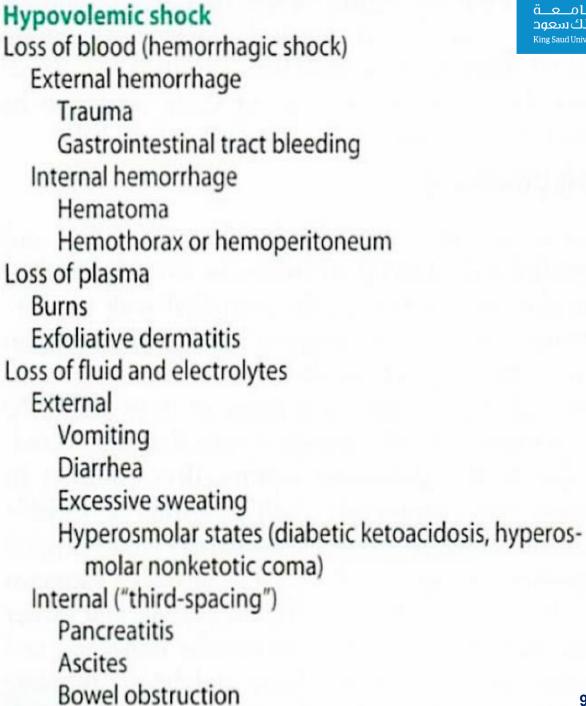
- Any condition in which the circulatory system is unable to provide adequate circulation & tissue perfusion, resulting in failure to deliver oxygen to the tissues & vital body organs relative to its metabolic requirement.
- Defined as Circulatory Shock.
- Results in organ dysfunction & cellular damage.
- If not quickly corrected, it may lead to irreversible shock & death.



Types of Shock

Hypovolemic – most common Hemorrhagic, occult fluid loss Cardiogenic Ischemia, arrhythmia, valvular, myocardial depression Distributive Anaphylaxis, sepsis, neurogenic Obstructive Tension pneumo, pericardial tamponade, PE

HYPOVOLEMIC SHOCK


Low CO due to:

- Inadequate blood/plasma volume (loss of 15-25% / 1-2 L).
- Reduced venous return (preload.).

Causes:

- Blood loss: Hemorrhage.. internal or external. (commonest.)
- Fluid/plasma loss: Vomiting, diarrhea, burn, excess sweating, dehydration, trauma.

جـــامــعـــة الملكسعود

CARDIOGENIC SHOCK

Low CO due to:

• Failure of myocardial pump, despite adequate ventricular filling pressure.

Causes:

- Myocardial Infarction.. (Most common.)
- Myocarditis.
- Cardiomyopathy.
- Cardiac tamponade.
- Acute valvular dysfunction, e.g. rupture of papillary muscle post MI.
- Congestive heart failure.
- Sustained Arrhythmias, e.g. heart block, ventricular tachycardia.
- Pulmonary embolism.
- □ Is associated with loss of > 40% of LV myocardial function.
- □ Mortality rate is high (60-90%).

Dr. Abeer A. Al-Masri, Faculty of Medicine, KSU

OBSTRUCTIVE SHOCK

CO is reduced by vascular obstruction:

- Obstruction of venous return:
 - e.g. Vena Cava Syndrome (usually neoplasms).

- Compression of the heart:

• e.g. hemorrhagic pericarditis \rightarrow cardiac tamponade.

- Obstruction of the outflow of the heart:

- Aortic dissection.
- Massive pulmonary embolism.
- Pneumothorax.

DISTRIBUTIVE SHOCK: HIGH/ NORMAL OUTPUT

- **CO** is normal or elevated.
- Distribution is inappropriate.
- **Shock is due to loss of vascular resistance.**

DISTRIBUTIVE SHOCK: HIGH/ NORMAL OUTPUT

Septic/ Toxic/ Endotoxic Shock:

- Bacterial endotoxin triggers peripheral vasodilatation & endothelial injury.
- Hyperdynamic state.

Anaphylactic shock:

- Massive & generalized allergic reaction.
- IgE- mediated hypersensitivity.
- Histamine triggers peripheral vasodilation & ↑ capillary permeability.
- Can lead to low output distributive shock.

Psychogenic shock:

- Simple fainting (syncope.)
- Caused by stress, pain, or fright.
- ↓ HR & vessels dilate.
- Brain becomes hypoperfused.
- Loss of consciousness.

MAP = CO X PR

13

NEUROGENIC/ SPINAL SHOCK ... (VENOUS POOLING)

Circulatory failure:

- Loss or drop in vasomotor (vascular) tone/ spinal cord injury.
- Generalized peripheral vasodilation.
- Blood volume remains normal.
- CO is severely reduced as blood is pooled in peripheral veins.. (Capacity of blood ↑, & venous return ↓.)
- Behaves like hypovolemic shock.

PATHOPHYSIOLOGY OF SHOCK

- Reduce capillary perfusion.
- Inadequate tissue oxygen.
- Shift to anaerobic metabolism.
- Metabolic acidosis.
- Release of free radicals & oxidative stress.
- Tissue damage.
- Apoptosis.

METABOLIC CHANGES & CELLULAR RESPONSE TO SHOCK

- 1. Spasm of pre/post capillary sphincters:
 - \rightarrow reduced capillary perfusion.
 - \rightarrow hypoxic tissue damage, (oxidative stress.)
 - \rightarrow anaerobic metabolism (anaerobic glycolysis.)
 - \rightarrow lactic acid production.
 - \rightarrow metabolic acidosis (intracellular acidosis).
 - \rightarrow Failure of Na+/K+ pump (inc [Na+] & [C++]).
 - → Lysosomes, nuclear membranes & mitochondrial breakdown.

METABOLIC CHANGES & CELLULAR RESPONSE TO SHOCK

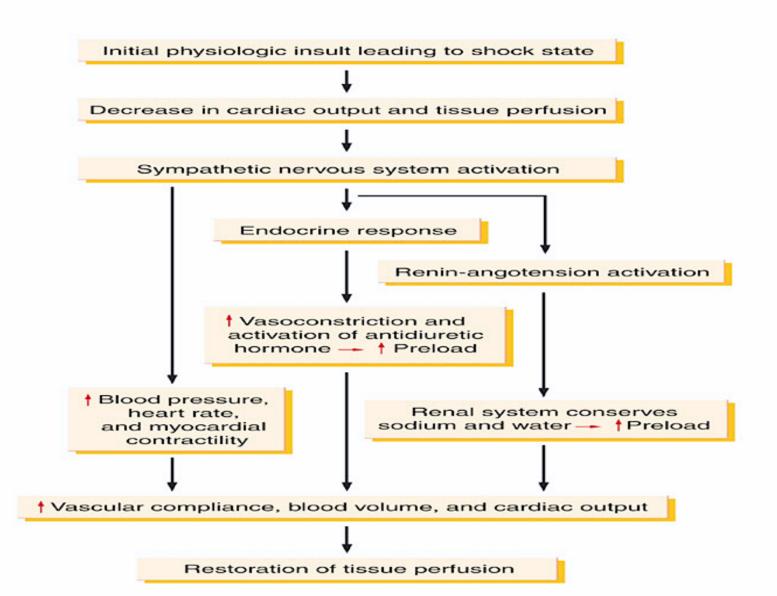
- After 3 5 hrs of shock → precapillary sphincters dilate (venules are still constricted) → blood stagnation in capillaries → hypoxia continue + fluid leaves to extra vascular compartment → further reduction in circulating blood volume.
- 3. Granulocytes accumulation at injured vessels \rightarrow free radicals release \rightarrow further tissue damage.

METABOLIC CHANGES & CELLULAR RESPONSE TO SHOCK

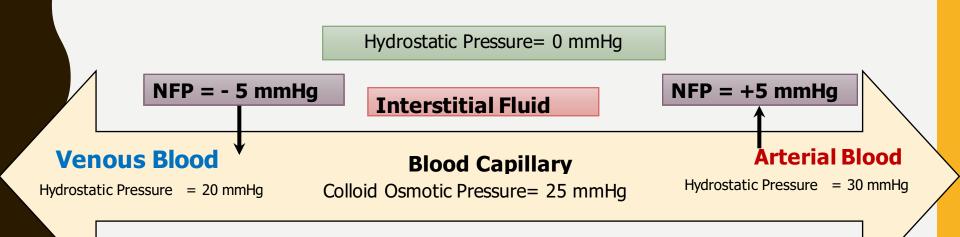
- 4. Damage in **GIT mucosa** \rightarrow allows bacteria into circulation.
- 5. Cerebral ischemia \rightarrow depression of VMC \rightarrow vasodilation + \downarrow HR

(vasomotor center .. sympathetic)

further decrease in blood pressure.


- 6. Myocardial ischemia → depressed contractility + myocardial damage more shock & acidosis.
- 7. **Respiratory distress** syndrome occurs due to damage of capillary endothelial cells & alveolar epithelial cells, with release of cytokines.
- 8. Multiple organ failure & death.

COMPENSATORY MECHANISMS


- □ ↓ BP stimulates baroreceptors reflex → sympathetic stimulation.
- ❑ Acidosis stimulates chemoreceptors reflex → sympathetic stimulation.
- Renin-Angiotensin Mechanism:
 - Angiotensin II & III: powerful vasoconstrictors.
 - Aldosterone: Na+ & water retention.
- ADH (vasopressin):
 - Water retention, vasoconstriction & thirst stimulation.
- Plasma proteins synthesis.
- Fluid- shift mechanism.

Compensatory Mechanisms

IN NORMAL MICROCIRCULATION

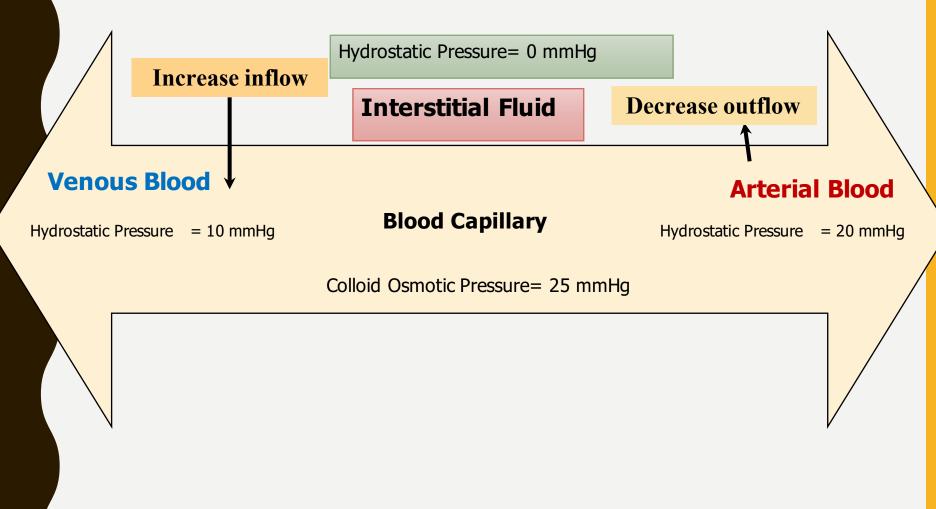
At arterial end:

- Water moves out of the capillary with a NFP of +5 mmHg.
- Hydrostatic pressure dominates at the arterial end & net fluid flows out of the circulation.

At venous end:

- Water moves into the capillary with a NFP of -5 mmHg.
- Oncotic pressure dominates at the venous end & net fluid will flow into the bloodstream.

Dr. Abeer A. Al-Masri, Faculty of Medicine, KSU


FLUID- SHIFT MECHANISM IN SHOCK

- In shock, the hydrostatic pressure decreases & oncotic pressure is constant, as a result:
 - The fluid exchange from the capillary to the extracellular space decreases.
 - The fluid return from the extracellular space to the capillary increases.

That will increase the blood volume & will increase BP helping to compensate shock situations.

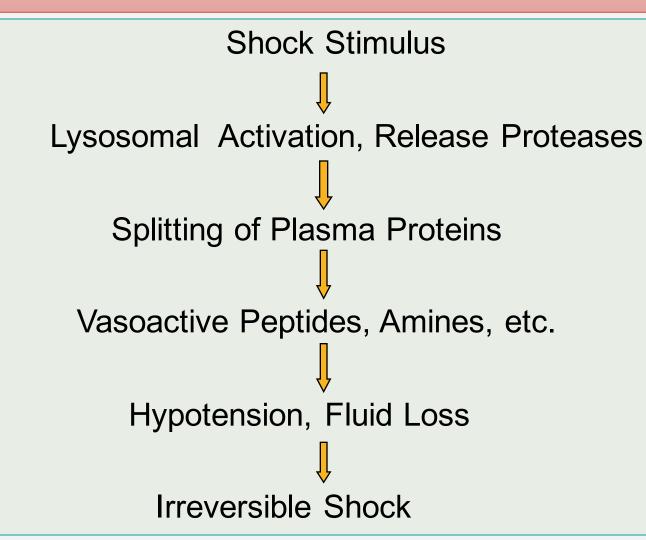
Fluid – Shift Mechanism In Shock

STAGES OF SHOCK

Reversible shock: (Compensated)

- Changes can be reversed by compensatory mechanism (neurohormonal activation) or by treatment.
- Defense mechanisms are successful in maintaining perfusion.
- Non-progressive.

Progressive:


- Defense mechanisms begin to fall.
- Multi-organ failure.

Irreversible shock:

- Complete failure of compensatory mechanisms.
- Can lead to death.

POSSIBLE MECHANISM IN DEVELOPMENT IRREVERSIBLE SHOCK

Dr. Abeer A. Al-Masri, Faculty of Medicine, KSU

SIGNS/SYMPTOMS: HYPOVOLEMIC SHOCK

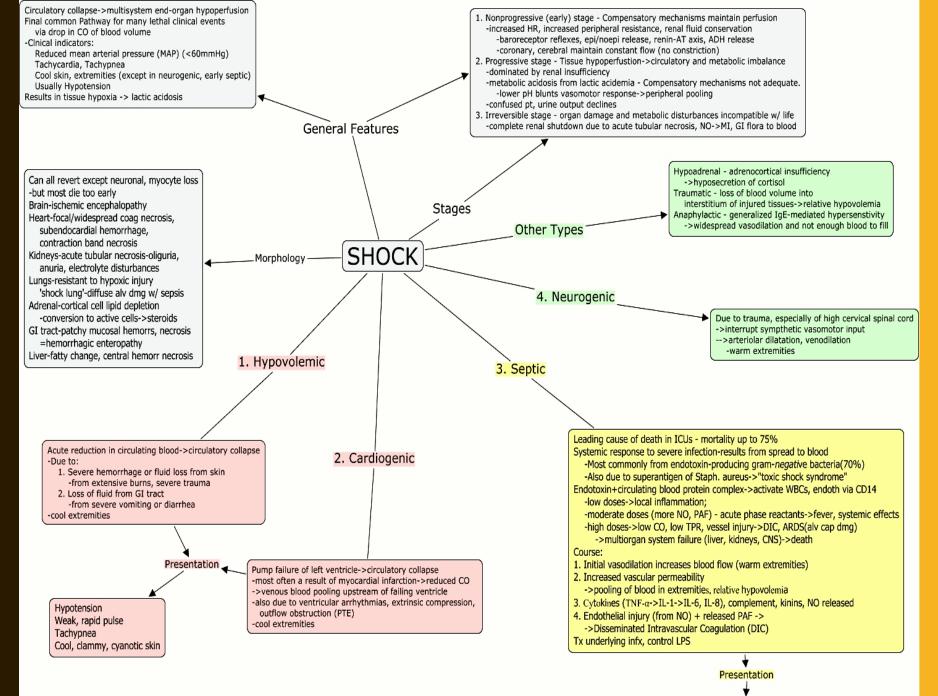
- Hypotension... (? ≤ 85/40 mmHg)
- Tachycardia... Compensation for \downarrow MAP sensed by Baroreceptors.
- Rapid, weak, & thready pulse... (? 140/min).
- Intense thirst.
- Tachypnea (rapid respiration)... Compensation for hypoxia sensed by Chemoreceptors.
- Restlessness... due to hypo-perfusion.
- Cold, pale skin... due to hypo-perfusion.
- Oliguria (low urine output)/ Anuria (no urine output).
- Blood test: Lactic acidosis.

SIGNS/SYMPTOMS: CARDIOGENIC SHOCK

- Similar signs & symptoms to that of hypovolemic shock.
 - Congestion of lungs & viscera: (CXR)
 - o Interstitial pulmonary oedema.
 - Alveolar edema.
 - Cardiomegaly.

SIGNS/SYMPTOMS: SEPTIC SHOCK

Patient flushed & warm due to his hyperdynamic state.


To Summarize

Type of Shock	Insult	Physiologic Effect	Compensation
Cardiogenic	Heart fails to pump blood out	↑CO	BaroRc ↑SVR
Obstructive	Heart pumps well, but the outflow is obstructed	↑CO	BaroRc ↑SVR
Hemorrhagic	Heart pumps well, but not enough blood volume to pump	↑CO	BaroRc ↑SVR
Distributive	Heart pumps well, but there is peripheral vasodilation	↓SVR	↑CO

Hemodynamics of Shock

Red arrow indicates primary abnormality	PCWP (preload)	Cardiac Output	SVR (afterload)	Treatment
Hypovolemic shock	↓	1	1	IV fluids
Cardiogenic shock	1	↓	1	Inotropes Revascularization
Distributive shock (septic, neurogenic)	\checkmark	1	↓	Pressors IV fluids

PCWP = pulmonary capillary wedge pressure SVR = systemic vascular resistance

Skin warm and flushed

