kidney function tests ## what is creatinine? - the end product of creatine catabolism - 98% of the body creatine → in muscles as creatine phosphate - 1-2% of total muscle creatine → converted daily to creatinine through the spontaneous non enzymatic loss of water or phosphate | routine KFTs | | | |--|--|--| | serum creatinine | creatinine clearance | serum urea | | 55 - 120 μmol/L (wide range) | males: 90 - 140 ml/min
females: 80 - 125 ml/min | 2.5 - 6.6 mmol/L | | endogenous(not affected with diet) plasma creatinine remains constant throughout adult life more accurate (?) it is a one time test there is no need to collect 24-hour sample collection freely filtered at glomeruli + not reabsorbed + secreted by tubules (10%) | measurement of GFR provides useful index of the number of functioning glomeruli estimate the degree of renal impairment recommanded in: patient with early (minor) renal disease assessment of possible kidney donors detection of renal toxicity of some nephrotoxic drugs | amino acids → ammonia (deamination) ammonia → urea (in the liver) serum urea is inferior to serum creatinine (why?) ↑ serum urea in: dehydration high protein diet (*amino acids) any condition causes ↑ proteins catabolism: ✓ cushing syndrome ✓ diabetes mellitus ✓ starvation ✓ thyrotoxicosis 50% or more of urea filtered at the glomerulus is passively reabsorbed by the renal tubules. | | ↑ serum creatinine → impaired renal function normal serum creatinine → does not always indicate normal renal function (it may not be elevated until GFR is fallen by as much as 50%) | clearance (ml/min) = \$\frac{U \times V}{P}\$ The average in old adults is 110 ml/min It falls to 70 ml/min in individuals over 80 years in children, GFR should be related to surface area. when this is done results are similar to those found in young adults measured by using 24-hour urine collection (potential for errors, but there is an alternative!) | | | | cockcroft-gault formula for estimation of GFR $GFR = \frac{K \times (140 - Age) \times Body \ weight}{serum \ creatinine}$ • K is constant that varies with sex (muscle mass) • it is an alternative methode to calculate creatinine clearance using parameters such as: serum creatinine, sex, age, body weight • it shouldn't be used if (limitations): | | kidney function tests are used to: - confirm the diagnosis of renal disease - give an idea about the severity of the disease - follow up treatment