Week 4 lectures (Physiology 9,10 and 11)

Physiology 9

Acid – Base Balance

-Acid – Base Balance (pH HOMEOSTASIS)

-To avoid disturbances in $[H^+]$, and to maintain its homeostasis, the amount generated / taken in <u>MUST EQUAL</u> the amount secreted.

-Most enzymes function optimally at $pH \sim 7.4$ (except gastric enzymes).

Bronsted-Lowry												
AC	CIDS	BASES										
Molecules containing hydr (DONATE) H ⁺ into soluti	ogen atoms that can on	ions or molecules that can ACCEPT H ⁺										
Strong	Weak	Strong	Weak									
all their H^+ is dissociated completely in H_2O .	dissociate partially in H ₂ O and are efficient at	dissociate easily in H ₂ O and quickly	accept H ⁺ more slowly									
	preventing pri changes.		Proteins in body function as weak bases as some constituent AMINO ACIDS have net negative charge and attract H ⁺ (e.g. HAEMOGLOBIN).									

- water is amphoteric compound:

*as a base, it accepts H^+ and forms a hydronium ion (H_3O^+) .

*as an acid, it loses a proton, and forms a hydroxide ion (OH).

- The **pH** of a solution is a measure of the acidity of the solution. It is defined as:

$$\mathbf{pH} = -\log_{10}([\mathbf{H}_{3}\mathbf{O}^{+}])$$

- **pH** does not measure the strength of an acid, but the acidity of a given solution (Conc. Of H+) $\mathbf{pH} = \log \frac{1}{1} = -\log [\mathbf{H}^+]$

$$pH = \log \frac{1}{[H^+]} = -\log [H^+]$$

Normal pH = -log [0.0000004] M = 7.4

- pH **INVERSELY** related to [H⁺].
- Normal **BLOOD** pH range for adults = **7.35 7.45** maintained by:

chemical buffer systems, kidneys and lungs.

- DEATH likely if pH \uparrow 7.8 or \downarrow 6.8.

Sources of H ⁺ The body generally PRODUCES more acids than bases									
Cellular aerobic metabolism produces 15,000	DIET – incomplete metabolism of carbohydrates (lactate)								
mmol CO2/day.	lipids (ketones) and proteins (H ₂ SO ₄ , H ₃ PO ₄)								
$CO_2 + H_20 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$	fixed (non-volatile) acids								
(volatile acid)	~50 -100 mEq per day								
Normally all volatile acid excreted by the lungs									

How is [H ⁺] Controlled? Three systems involved										
BUFFERS 1 st defence	LUNGS 2 nd defence	KIDNEYS 3 rd defence								
regulation of [H⁺]	Excretion of CO_2 ($\downarrow H_2CO_3$) (removal of volatile acid)	Excretion of H^+ ($\uparrow HCO_3^-$) (fixed acids)								
second – to – second (fastest)	in minutes - to - hours	Several hours to days. slowest, but most POWERFUL								

- Relative concentrations of CO and HCO - in plasma / ECF determine pH (HENDERSON-HASSELBALCH equation), (show the relationship between pH,

hydrogen ion conc. and the ratio of buffer membrane in a solution)

$$pH = pK + log \frac{HCO_3^-}{(0.03 \times PcO_2)}$$

What happen to the pH using H-H *IMPORTANT*									
In case if the HCO ₃ in Plasma remains normal	In case the Pco ₂ remains normal								
If Pco_2 increased, the ratio of [HCO ₃]P/ 0.03 Pco ₂	Increase bicarbonate in plasma causes an increase								
will decrease which lead to acidosis	in the ratio which leads to alkalosis								
If Pco_2 decrease, the ratio will increase and pH will	Decrease in bicarbonate in plasma causes a decrease								
increase causing alkalosis	in the ration which leads to acidosis								

	рН	H+	Pco ₂	HCO ⁻ 3
Normal	7.4	40 mEq/L	40 mm Hg	24mEq/L
Respiratory acidosis	\downarrow	1	^	1
Respiratory alkalosis	1	\downarrow	$\downarrow\downarrow$	\downarrow
Metabolic acidosis	\downarrow	1	\downarrow	$\downarrow\downarrow$
Metabolic alkalosis	1	\downarrow	1	11

The primary event is indicated by the double arrows ($\uparrow\uparrow$ or $\downarrow\downarrow$). Note that respiratory acid-base disorders are initiated by an increase or decrease in Pco₂, whereas metabolic disorders are initiated by an increase or decrease in HCO₃.

Figure 30-10 Analysis of simple acid-base disorders. If the compensatory responses are markedly different from those shown at the bottom of the figure, one should suspect a mixed acid-base disorder.

Physiology 10 (Buffering system)

BUFFERING SYSTEM: They do not eliminate H+from body, REVERSIBLY bind H+ until balance is reestablished.											
Bicarbonate buffer System	Phosphate Buffering System	Protein Buffers	Bone								
Most important buffering system.	major intracellular buffer and important in renal tubular fluid	60 -70% of total chemical buffering of body fluids is located intracellularly	Probably involved in providing a degree of buffering (by ionic exchange) in most acid base disorders.								
MainMostdisorders.Workscomponentsimportant nonChronicby actingare :bicarbonatemetabolicas protonHPO4 andbufferingacidosisacceptorH2PO4proteinsare titratablefor carbonicgroups ongroups onHAENARA											
 Remember that all of these buffer systems work in tandem NOT in isolation. Buffers can only limit changes in pH, they cannot reverse them. Once arterial pH has deviated from normal value, can only be returned to normal by respiratory or renal compensation. 											

Renal regulation of Acid-Base Balance

IF KIDNEYS FAIL, pH BALANCE WILL FAIL

-	 													-						-				-																	
	Т	he	ki	dne	eys	5 0	on	np	le	te	0	ra	ad	d	up) t	0 1	th	e١	N	orl	k	of	b	ufl	fer	S	an	ıd	lu	ng	s,	fai	lu	re	of	th	e i	er	nal	
	re	egu	ıla	tio	n١	vil	l c	a	ISE	e i	m	ba	la	n	ce	s t	ha	at	di	st	ur	b	al	lo	th	e	r r	eg	ul	at	iną	g s	yst	er	ns						
	 													-																											

≥ 21

Respiratory Regulation of Acid-Base Balance

Respiratory system

You Tube

Pulmonary expiration of CO₂ normally **BALANCES** metabolic formation of CO₂.

Changes in alveolar ventilation can alter plasma Pco₂

- \uparrow ventilation, $\downarrow Pco_2$, $\uparrow pH$

- \downarrow ventilation, \uparrow Pco₂, \downarrow pH

Changes in $[H^+]$ also alters **ALVEOLARVENTILATION**.

POWERFUL

(1-2 x better than extracellular chemical buffers), but <u>cannot fully rectify</u> disturbances outside respiratory system, *i.e.* with fixed acids like lactic acid.

Acts relatively **RAPIDLY** to stop [H⁺] changing too much until renal buffering kicks in but **DOES NOT** eliminate H⁺ (or HCO₃⁻) from body.

Abnormalities of respiration can alter bodily [H⁺] resulting in;

- RESPIRATORY ACIDOSIS

Or

- RESPIRATORY ALKALOSIS.

18

Physiology 11

> 2

Metabolic Acidosis

Reduction in pH + ↑ in ECF H+ concentration
 DECREASED [HCO3-] (<25mH) and pH.

Rare, occur in response to:

Metabolic Alkalosis Characterized by elevated plasma HCO, & PH

Major Causes of Metabolic Alkalosis

 ≥ 4

Primary and compensatory changes in different acid-base disorders

	Table 5.2 Primary and Compensatory Changes in Different Acid-Base Disorders										
Disorder	Primary Change	Compensatory Response									
Metabolic acidosis	Fall in plasma bicarbonate concentration	Reduction in PCO2 averaging 1.2 mm Hg per 1-mEqL reduction in plasma bicarbonate concentration									
Metabolic alkalosis	Rise in plasma bicarbonate concentration	Elevation in PCO_2 averaging 0.6–0.7 mm Hg per 1-mEq/L rise in plasma bicarbonate concentration									
Respiratory acidosis	Elevation in PCO ₂	Acute: Rise in plasma bicarbonate concentration averaging 1 mEqL per 10 mm Hg elevation in PCO ₂ Chronic: Increase in plasma bicarbonate concentration averaging 3.5 mEqR, per 10 mm Hg rise in PCO ₂									
Respiratory alkalosis	Reduction in PCO ₂	Acute: Fall in plasma bicarbonate concentration averaging 2 mEqL per 10 mm Hg decline in PCO ₂ Chronic: Fall in plasma bicarbonate concentration averaging 4 mEqL per 10 mm Hg decline in PCO ₂									

Table 7-2 Summary of Acid-Base Disorders

Disorder	CO2 + H2O	↔	H,	+	HCO3-	Respiratory Compensation	Renal Compensation or Correction
Metabolic Acidosis	1		Τ.		Ļ	Hyperventilation	[†] HCO ₃ ⁻ reabsorption (correction)
Metabolic Alkalosis	1		4		†	Hypoventilation	↑ HCO ₁ ⁻ excretion (correction)
Respiratory Acidosis	Ť		τ.		1	None	↑ HCO ₃ ⁻ reabsorption (compensation)
Respiratory Alkalosis	Ť		4		1	None	\downarrow HCO3 ⁻ reabsorption (compensation)

Bold arrows indicate initial disturbance.

> 7

Analysis of Acid-Base Disorders

Analysis aimed at identifying underlying cause of disorder such that appropriate therapy can be initiated.

- In addition to usual history taking and physical findings, sampling of arterial blood can yield valuable information.
- Analysis of blood sample data is straightforward if approached systematically either using the Davenport nomogram or flow diagram.

How to Analyze an ABG

	P02	pH	PCO2	нсоз
normal	80-100mmHg	7.35_7.45	35-45 mmHg	22-26 mmol/L

* If the compensatory response is not appropriate, a mixed acid-base disorder should be suspected.

Acid-Base Disturbances

	pH	H"	Pco ₂	HCO ₃ "
Normal	7.4	40 mEq/L	40 mm Hg	24 mEq/L
Respiratory acidosis	Ļ	Ť	††	Ť
Respiratory alkalosis	Ť	Ļ	11	ţ
Metabolic acidosis	Ļ	Ť	Ļ	¹¹
Metabolic alkalosis	Ť	Ļ	Ť	††

Done By :

Munira Alomari, Afnan Almalki, Razan Alsabti, Nouf Altwaijri and Nouf Alabdulkarim