DNA Extraction and Purification

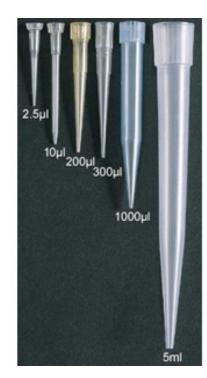
Lab Equipments

Automatic pipettes

Microcentrifuge

Water bath

UV-spectrophotometer


Lab Equipments

Eppendorf tube

Cuvettes

Tips

Rack- test tube

	-	4						U		۲		۲	0	0	0
	-	-	-	-	-	-	-	-	-	0	-		0	C	000
-	-	-	-	-	-	-	-	-	-	-	-	0	-	6	~
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~
-	-	-	-	-	-	-		-	-			6	<		1

Rack- eppendorf tube

DNA Extraction

Principle:

- 1. Lysis of nucleated cells.
- 2. **Removal of contaminants:** Any substance other than DNA, e.g., proteins
- 3. Measurements: UV absorbance at 260nm and 280nm

Purity of DNA solution: 260/280 ratio **DNA concentration:** Absorbance at 260nm

DNA Extraction

Steps:

- Lysis of nucleated cells using lysis buffer.
- **Binding** of DNA to the membrane of spin column.
- Wash: using wash buffer.
- Elution of pure DNA

Spin Protocol of DNA Purification from Blood

- 1. Pipette 20µl protease.
- Add 200µl sample.
- Add 200µl Buffer AL.
- 4. Mix by pulse-vortex for 15s and incubate at 56°C for 10 minutes.
- 5. Briefly centrifuge.
- 6. Add 200µl 96-100% ethanol and mix by pulse-vortex for 15s.
- 7. Briefly centrifuge.
- 8. Apply the mixture to the Mini spin column.
- 9. Centrifuge at 8000 rpm for 1 minute.

- 10. Discard the collection tube.
- 11. Place the column in a new 2ml collection tube.
- 12. Add 500µl buffer AW1.
- 13. Centrifuge at 8000 rpm for 1 minute.

- 14. Place the column in a new 2ml collection tube. 15. Add **500μl** buffer **AW2**.
- 16. Centrifuge at 14000 rpm for 3 minutes.
- 17. Place the column in a new 2ml collection tube.
- 18. Centrifuge at 14000 rpm for 1 minute.

Place the column in a new 1.5ml tube.
Add 200μl buffer AE.
Incubate at room temperature for 1 minute.
Centrifuge at 8000 rpm for 1 minute.

Add 400µl buffer AE to dilute the eluted DNA (3X dilution)

23. Quantify the DNA concentration.

Quantification of the purified DNA

- Measure the Absorbance at **260nm**.
- Measure the Absorbance at **280nm**.

Measurements

• Assess the DNA purity: 260/280 ratio

(Accepted ratio: **1.7 - 1.9**)

- Calculate DNA Conc.: Provided A260 = 1.0, DNA is 50 μ g/ml, unknown DNA Conc. can be calculated by cross multiplication
 - A260 = 1.0DNA conc. = 50 µg/mlA260 = 0.5DNA conc. ?

Note:- In case of diluting the eluted sample, multiplies the final concentration by the dilution factor. This can be adjusted by the spectrophotometer.

DNA yield

DNA Yield = DNA Volume x final DNA Conc.

Example:

If you have

Volume of DNA solution: 200µl (0.2 ml) **Final DNA Conc.:** 30 µg/ml

Then, the yield (µg) = 0.2 ml x 30 µg/ml = $6.0 \mu g$

DNA Applications

Purified DNA can be used for:

1. Molecular diagnosis of diseases.

(e.g., sickle cell anemia)

2. Forensic applications.

(e.g., paternity testing)

3. Molecular biology research.

Molecular techniques using purified DNA:

a. Amplification techniques: Polymerase Chain Reaction (PCR).

b. Southern blotting.

c. Restriction Fragment length polymorphism (RFLP).