Lecture Title: ANTIBIOTICS

(Foundation Block, Microbiology)

Dr. Fawzia Alotaibi Department of Pathology, Microbiology Unit

Lecture Objectives..

- By the end of this lecture the student should be able to:
- Define antibiotic ,chemotherapy and selective toxicity
- Describe the difference between bactericidal and bacteriostatic antibiotics
- Recognize the narrow and broad spectrum antibiotics
- Define the therapeutic index

Lecture Objectives..

- Know the mechanism of action of antimicrobial agents.
- Recognize the various classes of antimicrobial agents(action, spectrum and side effects)
- Explain the criteria for an ideal antimicrobial

ANTIMICROBIAL AGENTS

ANTIBIOTICS:

Natural compounds produced by microorganism which inhibit the growth of other microorganism

CHEMOTHERAPY:

> Synthetic compounds .

> Antimicrobial agents.

SELECTIVE TOXICITY:

The ability to kill or inhibit the growth of a microorganism without harming the host cells.

<u>Activity</u> <u>BACTERICIDAL</u>: kills bacteria <u>BACTERIOSTATIC</u>: prevents multiplication.

Spectrum of activity

- > Broad spectrum : Gram positive & Gram negative bacteria
- > Narrow spectrum : selected organism.

THERAPEUTIC INDEX:

The RATIO of the dose toxic to the host to the effective therapeutic dose.

Examples:
 Penicillin: High
 Aminoglycosides : low
 Polymon B : the lowest

MECHANISMS OF ACTION OF ANTIMICROBIALS

- 1) Inhibition of cell wall synthesis.
- 2) alteration of cell membrane
- 3) Inhibition of protein synthesis
- 4) Inhibition of nucleic acid synthesis
- 5) Anti-metabolite OR competitive antagonism.

ANTIMICROBIALS THAT INHIBIT CELL WALL SYNTHESIS

- 1- Beta –Lactam antimicrobial agents
- Penicillins
- Cephalosporins
- Cephamycin
- Carbapenems (imipenem & meropenem)
- Monobactam (aztreonam)
- Beta-lactamase inhibitors
 - 2- Vancomycin (Teicoplanin)

β ~ LACTAM ANTIBIOTICS:

- Contain : Beta~ Lactam ring & organic acid.
- Natural & Semi-synthetic
- Bactericidal
- Bind to *PBP*, interfere with trans-peptidation reaction
- Toxicity: mainly;
 - hypersensitivity
 - Anaphylaxis,
 - Diarrhea, ..etc

Penicillins:

Benzyl penicillin –

- ~ Penicillin V
- Procaine penicillin
- Benzathine penicillin

Isoxazolyl penicillins : cloxacillin – *Staph. Amino-penicillins* ~ampicillin –*Enterobacteria. Acylaminopenicillins*: piperacillin,mezlocillin-

Psudomonas.

CEPHALOSPORINS:

<u>First Generation:</u> Cephradine Ceohalexine

<u>Second generation:</u> Cefuroxime Cephamycin (Cefoxitin)

eg. CeftriaxoneCeftazidime

Fourth generation:

<u>Third generation:</u> expanded spectrum

β-Lactamase inhibitors

- Ring Saud Burnet
- β -Lactams with no antibacterial activity
- Irreversibly bind to β -lactamase enzyme
- Clavulanic acid, Sulbactam, Tazobactam
- Effective on staph. Penicillinases and broad spectrum β -lactamases.
- eg. amoxicillin/clavulanic acid, ticarcillin /clavulanic acid and piperacillin /tazobactam.

VANCOMYCIN

- > Glycopeptides
- Bactericidal .Acts on Gram positive bacteria only.
- Inhibit cell wall synthesis
- Given by injection only.
- → Used for MRSA ,S.epidermidis, pseudomembranous colitis.
- Red man syndrome ,phlebitis, nephrotoxic & ototoxic.

ANTIBIOTICS THAT ALTER CELL MEMBRANES

- Polymyxin B and Colistin
- Polymyxin B : a Peptide active against Gram negative bacteria only.
- Bactericidal.
- Only used LOCALLY due to serious nephrotoxicity
- Colistin used for the treatment of multi-resistant organisms (MRO) such as : *Pseudomonas* and *Acinetobacter* infections.

ANTIBIOTICS THAT INHIBIT PROTIEN SYNTHESIS

- AMINOGLYCOSIDES S30S ribosomal subunit
- TETRACYCLINE S30S ribosomal subunit
- CHLORAMPHENICOL 50 Sub Unit of 23 r RNA
- MACROLIDES 50 Sub Unit of 23 r RNA

AMINOGLYCOSIDES:

Bactericidal

- > Acts only on Gram negative bacteria
- Streptococci & anaerobes are naturally resistant
- > Examples: Gentamicin , Amikacin , Neomycin ,
- Given by injection.
- > Nephrotoxic & Ototoxic ~ dose related.

TETRACYCLINES

- > Broad spectrum, bacteriostatic
- > Oral absorption
- Intracellular organisms eg. Mycoplasma, Chlamydia ,Brucella also for V. cholera & Nocardia

Classes:

- Short acting: Tetracycline
- Long acting: Minocycline , Doxycycline (CSF penetration).
- New tetracycline : <u>Tigycycline</u> (MRSA,MSSA, some Gram negative bacteria and anaerobes.

Side effects :

> Teeth discoloration, GIT disturbance

CHLORAMPHENICOL

Broad spectrum ,bactericidal
 Affects bone marrow cells and cause a plastic anemia

Used for severe infections not responding to treatment, also for Rickettsial diseases.

MACROLIDES:

Erythromycin & Clindamycin

Bacteriostatic

Legionella, Camylobacter, Gram negative and positive infections for patients allergic to Penicillins and Cephalosporins.

Clindamycin acts on anaerobes as well

Cause GIT disturbance, Pseudomembraneous colitis.

New Macrolides :

Azithromycin & Clarithromycin.

ANTIMICROBIALS THAT ACT ON NUCLEIC ACID

➢ Rifampicin

Quinolones

Metronidazole

<u>RIFAMPICIN:</u>

Semi-synthetic, bactericidal, acts on Gram positive bacteria and selected Gram negative bacteria.

Reserved for Tuberculosis

Resistance develops quickly

Used in combination

Causes discoloration of body fluids & hepatotoxicity

QUINOLONES:

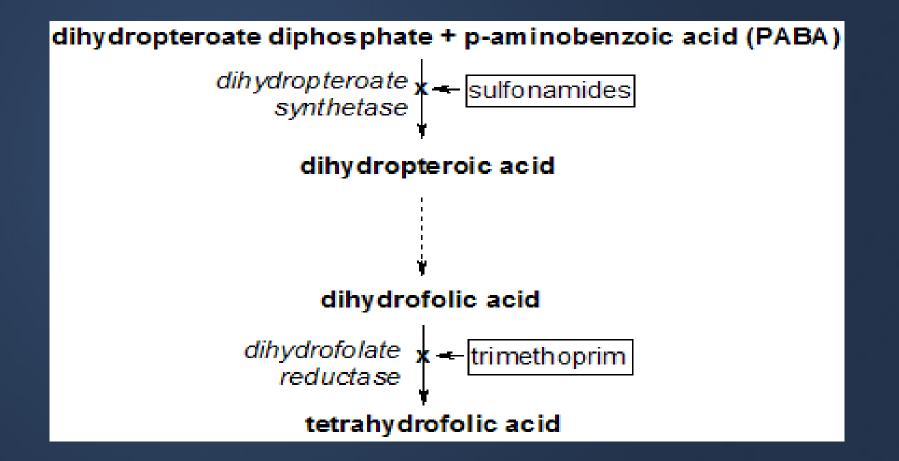
Synthetic, bactericidal, inhibit DNA *Gyrase* and /or topoisomerase.

Generations:

first generation: nalidexic acid –locally acting
 Second generation: fluoroquinolones eg. ciprofloxacin, norfloxacin, ofloxacin,levofloxacin
 Third generation: sparfloxacin, gatifloxacin
 Fourth generation: moxifloxacin, trovafloxacin

• Side effects: On cartilage & heart

Metronidazole


- Nitroimidazole active on anaerobic bacteria, and parasite
- Caused DNA breakage
- Used for *B.fragilis*, *Trichomonas vaginalis*, amoebiasis and giardiasis.

ANTIMETABOLITES (folate inhibitor s):

- Trimethoprim-Sulfamethoxazole (TMP-SMX)
- Combination of TMP-SMX called: Bactrim / Septrin
- Block sequential steps in folic acid synthesis
- Used to treat :Nocardia, Chlamydia, Protozoa & P.cranii
- > UTI, LRTI, OM., Sinusitis, infectious diarrhea.
- Side effects: GIT, hepatitis, bone marrow depression, hypersensitivity

ANTITUBERCULOUS AGENTS

First line:
INH
RIFAMPICIN
► ETHAMBUTOL
► PYRAZINAMIDE

Second line: ≻ STREPTOMYCIN > PASA > CYCLOSERINE, > CAPREOMYCIN

ISONIAZIDE (INH)

Bactericidal

Affects mycobacteria at different sites of lung tissues

Used for the treatment & prophylaxis of tuberculosis

Cause peripheral neuritis(<u>pyridoxine</u> (vitamin B6)

Ethambutol

- BACTERICIDAL
- CONCENTRATED IN
 PHAGOLYSOSOME OF
 ALVEOLI
- OPTIC NEURITIS

Pyrazinamide

- ACID
 ENVIRONMENT OF
 MACROPHAGES
- HEPATITIS & ARTHRALGIA

INDISCRIMINATE USE OF ANTIMICROBIALS SELECTIVE ADVANTAGE OF ANTIBIOTICS

TYPES OF RESISTANCE:

PRIMARY:

Innate eg. Streptococcus & anaerobes are resistant to gentamicin.

ANTIBIOTIC RESISTANCE IN BACTERIA (Continue)

Acquired resistance :

- > 1 MUTATION: MTB RESISTANT TO SRTEPTOMYCIN
- 2- GENE TRANSFER: plasmid mediated or through transposons
- Cross resistance :
- Resistance to one group confer resistance to other drug of the same group.
- ➢ eg. Resistance to erythromycin and clindamycin
- Dissociate resistance:
- resistance to gentamicin does not confer resistance to tobramicin.

1- Permeability changed

2~ modification of site of action, eg. MUTATION

3~ inactivation by enzymes . eg. Beta~ Lactamase & aminoglycoside inactivating enzymes

PRINCIPLES OF ANTIMICROBIAL THERAPY:

- INDICATION
- CHOICE OF DRUG
- ROUTE
- DOSAGE
- DURATION
- DISTRIBUTION
- EXCRETION
- TOXICITY
- COMBINATION
- PROPHYLAXIS:

SHORT TERM:

MENINGITIS

LONG TERM:

- TB, UTI , RHEUMATIC FEVER **CRITERIA FOR IDEAL ANTIMICROBIAL:**

► SELECTIVE TOXICITY

► NO HYPERSENSITIVITY

PENETERATE TISSUES QUICKLY

RESISTANCE NOT DEVELOP QUICKLY

NO EFFECT ON NORMAL FLORA

► BROAD SPECTRUM

Reference book and the relevant page numbers.

 Sherries Medical Microbiology, an introduction to Infectious Diseases. Latest edition, Kenneth Ryan and George Ray. Publisher: Mc Graw Hill.

I hank You ③

(Foundation Block, Microbiology)

