Foundation block: pathology

INFLAMMATION AND REPAIR Lecture 3

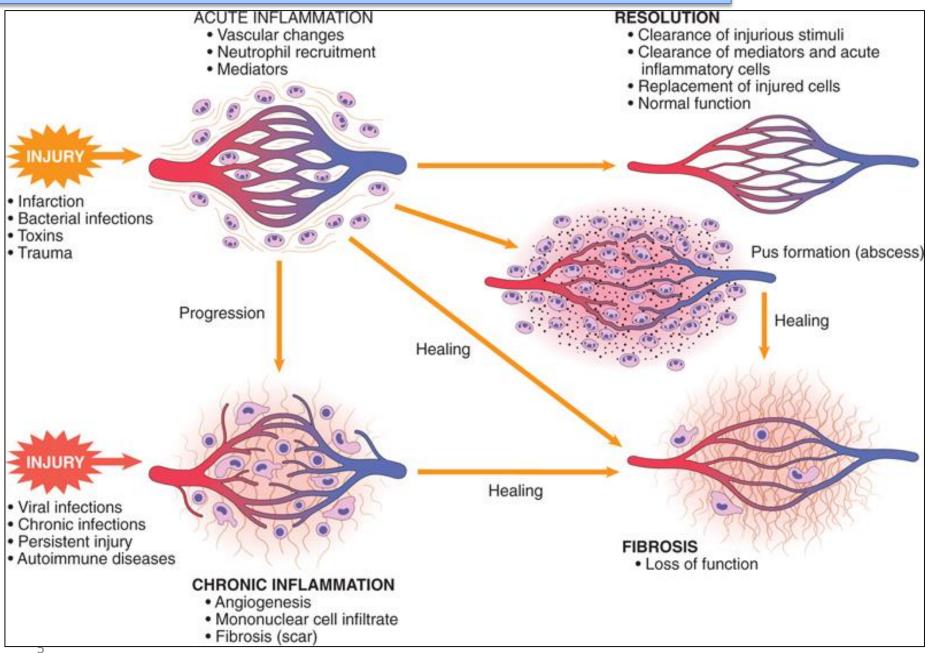
Dr. Maha Arafah Associate Professor Department of Pathology King Saud University

Email: marafah@hotmail.com

Oct, 2016

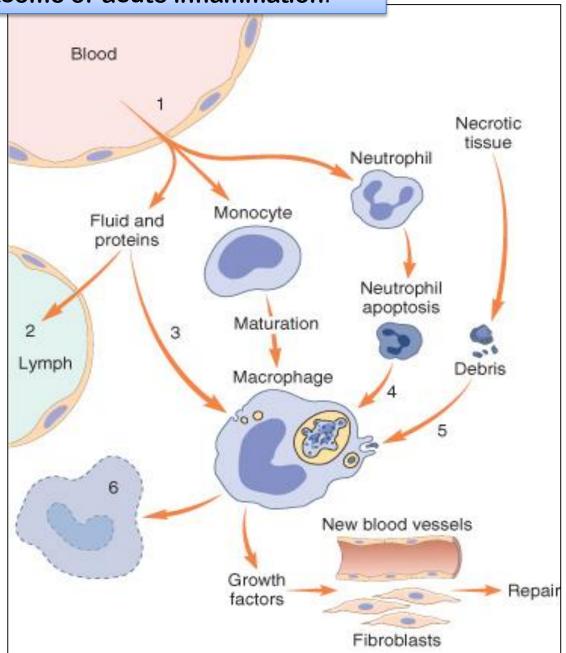
1. Outcomes of acute inflammation2. Different patterns of inflammation3. Chemical mediators

Objectives


- 1. List and describe the outcome of acute inflammation.
- 2. Recognize the different patterns of inflammation.
- 3. Chemical mediators of inflammation:
 - I. Definition
 - II. Know the general principles for chemical mediators.
 - III. Know the cellular sources and major effects of the mediators.
 - IV. List the most likely mediators of each of the steps of inflammation.

1. List and describe the outcome of acute inflammation.

Outcomes of Acute Inflammation


- Acute inflammation may have one of the four outcomes:
 - Complete resolution
 - Healing by connective tissue replacement (fibrosis)
 - Progression of the tissue response to chronic inflammation
 - Abscess formation

1. List and describe the outcome of acute inflammation.

1. List and describe the outcome of acute inflammation.

- Events in the resolution of inflammation
- This involves neutralization, decay, or enzymatic degradation of the various chemical mediators; normalization of vascular permeability; and cessation of leukocyte emigration and apoptosis
- The necrotic debris, edema fluid, and inflammatory cells are cleared by phagocytes and lymphatic drainage

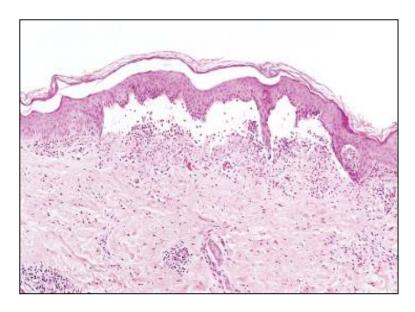
Objectives

Upon completion of this lecture, the student should:

- 1. List and describe the outcome of acute inflammation.
- 2. Recognize the different pattern of inflammation.
- 3. Define the chemical mediators of inflammation.
 - I. Definition
 - II. Know the general principles for chemical mediators.
 - III. Know the cellular sources and major effects of the mediators.
 - IV. List the most likely mediators of each of the steps of inflammation.

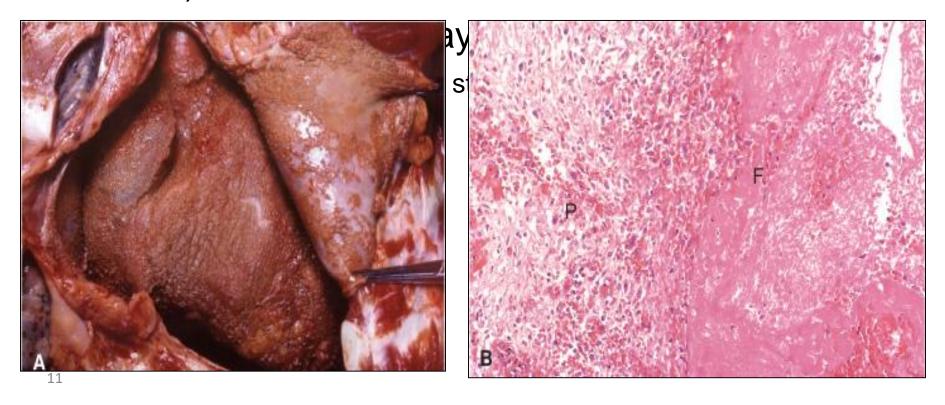
Morphologic Patterns of Acute Inflammation

- Several types of inflammation vary in their morphology and clinical correlates. Why?
 - The severity of the reaction
 - specific cause
 - the particular tissue
 - site involved


Morphologic Patterns of Acute Inflammation

- SEROUS INFLAMMATION
- FIBRINOUS INFLAMMATION
- SUPPURATIVE OR PURULENT INFLAMMATION
- ULCERS

SEROUS INFLAMMATION:


marked by the outpouring of a thin fluid

FIBRINOUS INFLAMMATION

 A fibrinous exudate is characteristic of inflammation in the lining of body cavities, such as the meninges, pericardium and pleura (larger molecules such as fibrinogen pass the vascular barrier)

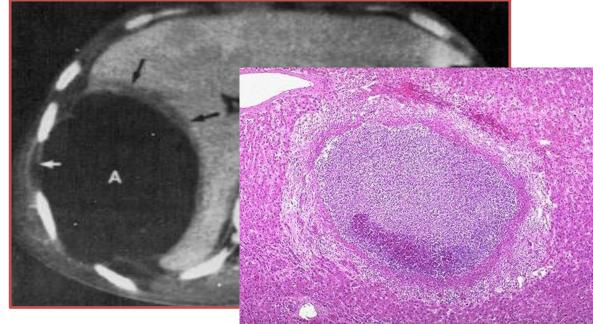
Catarrhal inflammation

 Inflammation affects mucosa-lined surfaces with the outpouring of watery mucus

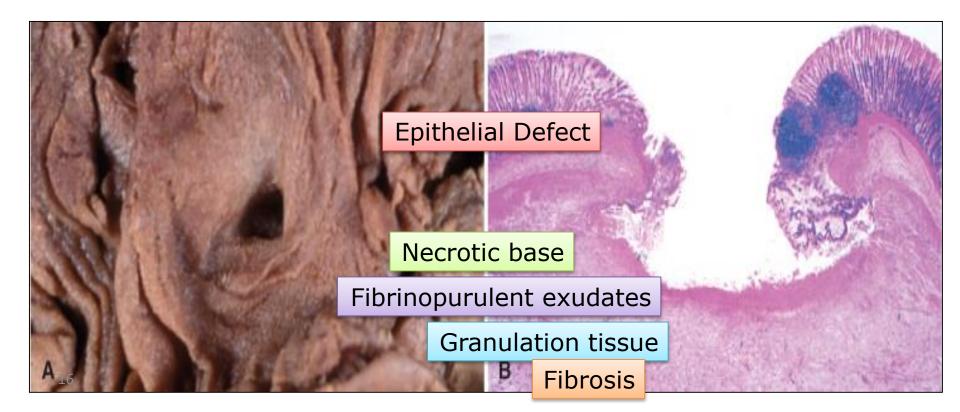
SUPPURATIVE OR PURULENT INFLAMMATION

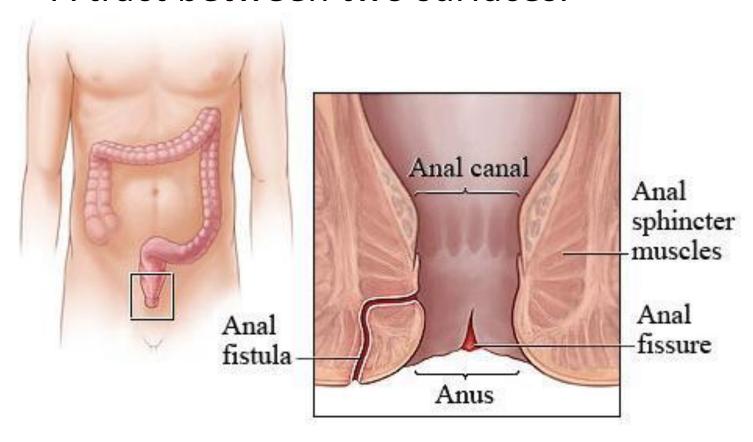
characterized by the production of large amounts of pus or purulent exudate consisting of neutrophils, necrotic cells, and edema fluid caused by pyogenic (pus-producing) bacteria

Suppurative abscess.


 An enclosed collection of pus consisits of a mixture of neutrophils and necrotic debris.

Morphologic Patterns of Acute Inflammation SUPPURATIVE OR PURULENT INFLAMMATION


 Abscesses: localized collections of purulent inflammatory tissue caused by suppuration buried in a tissue, an organ, or a confined space


ULCERS

An ulcer is a local defect of the surface of an organ or tissue that is produced by the sloughing (shedding) of inflammatory necrotic tissue

Fistula

A tract between two surfaces.

Cellulitis

 denotes a spreading acute inflammation through interstitial tissues.

Type	Features	Common Causes
Classic type	Hyperemia; exudation with fibrin	Bacterial infections; response
	and neutrophils	to cell necrosis of any cause.
Acute inflammation without neutrophils	Paucity of neutrophils in exudate;	Viral and rickettsial
	lymphocytes and plasma cells predominant	infections (immune response contributes).
Allergic acute inflammation	Marked edema and numerous	Certain hypersensitivity
	eosinophils; eosinophilia in blood.	immune reation
Serous inflammation (inflammation in	Marked fluid exudation.	Burns; many bacterial
body cavities)		infections.
Catarrhal inflammation (inflammation of	Marked secretion of mucus.	Infections, eg, common cold
mucous membranes)		(rhinovirus); allergy (eg, hay fever).
<u>Fibrinous</u> inflammation	Excess fibrin formation.	Many virulent bacterial infections.
Necrotizing inflammation, hemorrhagic	Marked tissue necrosis and	Highly virulent organisms
inflammation	hemorrhage.	(bacterial, viral, fungal), eg,
	-	plague (Yersinia pestis),
		mucormycosis.
Membranous (pseudomembranous)	Necrotizing inflammation involving	Toxigenic bacteria, eg,
inflammation	mucous membranes. The necrotic	diphtheria bacillus
	mucosa and inflammatory exudate	(Corynebacterium
	form an adherent membrane on the	diphtheriae) and Clostridium
	mucosal surface.	difficile.
Suppurative (purulent) inflammation	Exaggerated neutrophil response	Pyogenic bacteria, eg,
	and liquefactive necrosis of	staphylococci, streptococci,
	parenchymal cells; pus formation.	gram–negative bacilli,
	Marked neutrophil leukocytosis in	anaerobes.
	blood.	

Objectives

Upon completion of this lecture, the student should:

- 1. List and describe the outcome of acute inflammation.
- 2. Recognize the different pattern of inflammation.
- 3. Chemical mediators of inflammation:
 - I. Definition
 - II. Know the general principles for chemical mediators.
 - III. Know the cellular sources and major effects of the mediators.
 - IV. List the most likely mediators of each of the steps of inflammation.

What are mediators?

 Chemical mediators of inflammation are substances produced during inflammation inducing a specific events in acute inflammation.

General principles for chemical mediators

The production of active mediators is triggered by:

- 1. microbial products
- 2.host proteins, such as the proteins of the complement, kinin and coagulation systems
 - (these are themselves activated by microbes and damaged tissues)

General principles for chemical mediators

- Most mediators have the potential to cause harmful effects.
- Therefore, there should be a mechanism to checks and balances their action.
- **■** Mediator function is tightly regulated by:
 - 1) decay (e.g. AA metabolites)
 - 2) inactivated by enzymes (kininase inactivates bradykinin)
 - eliminated (antioxidants scavenge toxic oxygen metabolites)

Source of Chemical mediators

- Plasma-derived:
 - 1. Complement
 - 2. kinins
 - 3. coagulation factors
 - Many in "pro-form" requiring activation (enzymatic cleavage)

- Cell-derived:
 - Synthesized as needed (prostaglandin)
 - Preformed,
 sequestered and
 released (mast cell
 histamine)

Chemical Mediators of Inflammation

Cell-Derived

Plasma-Protein-Derived

Vasoactive Amines

Eicosanoids

PAF

Cytokines

Chemokines

ROS

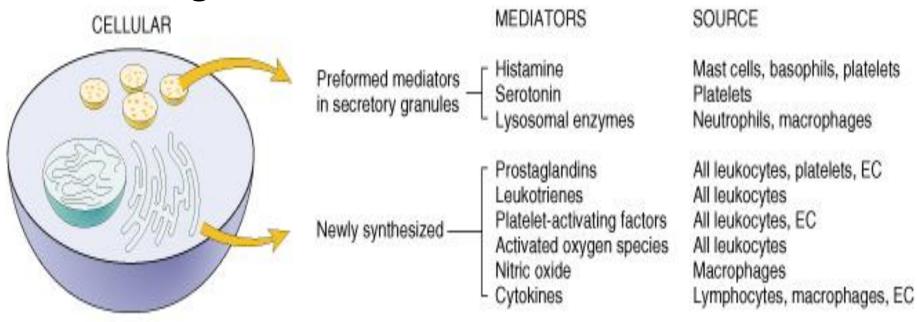
NO

Lysosomal Enzymes of Leukocytes

Neuropeptides

Chemical Mediators of Inflammation

Cell-Derived


Plasma-Protein-Derived

Complement

Coagulation and Kinin
Systems

Cell-Derived Mediators

Producing cells:

Vasoactive Amines

Histamine & Serotonin

Among first mediators in acute inflammatory

reactions Antigen Preformed ruge-Signals for IgE Fc receptor activation of phospholipase A2 Signals for degranulation Signals for cytokine gene activation **Nucleus** Membrane Degranulation phospholipids Secreted Granule contents Arachidonic PAF Histamine cytokines acid Proteases Chemotactic factors (ECF, NCF) Prostaglandin Leukotrienes B₄, C₄, D₄ Secondary mediators Primary mediators

Histamine

Source:

many cell types, esp. *mast cells*, *circulating basophils*, and *platelets*

Stimuli of Release:

Physical injury
Immune reactions
C3a and C5a fragments
Leukocyte-derived histaminereleasing proteins
Neuropeptides
Cytokines (e.g. IL-1 and IL-8)

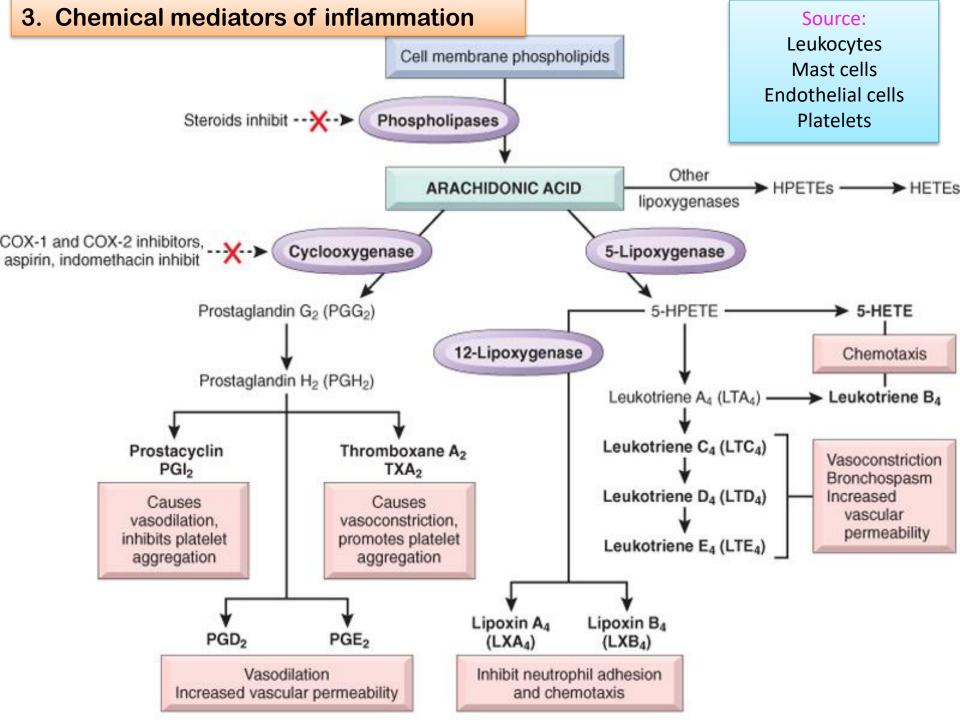
Actions:

- ARTERIOLAR DILATION
- 2. INCREASED VASCULAR PERMEABILITY (venular gaps)
- 3. ENDOTHELIAL ACTIVATION

Inactivated by: Histaminase

Serotonin (5-HT)

Source:


Platelets

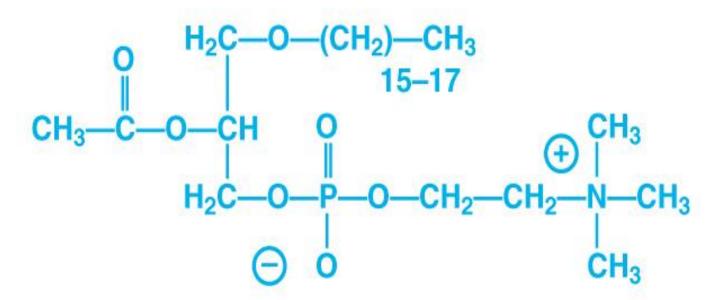
Action:

Similar to histamine

Stimulus:

Platelet aggregation

3. Chemical mediators of inflammation Cell membrane phospholipids Steroids inhibit - * 5 lipoxigenase pathway Cyclo oxigenase pathway COOH Other ARACHIDONIC ACID HPETEs ------> HETEs COX-1 and COX-2 lipoxygenases inhibitors, aspirin, indomethacin ... inhibit Cyclooxygenase 5-Lipoxygenase Prostaglandin G₂ (PGG₂) 5-HPETE Prostaglandin H₂ (PGH₂) Chemotaxis Prostacyclin Leukotriene PGI₂ receptor Leukotriene A₄ (LTA₄) ---- Leukotriene B₄ antagonists " inhibit Causes vasodilation, inhibits platelet Leukotriene C4 (LTC4) aggregation Bronchospasm Increased Leukotriene D₄ (LTD₄) vascular Thromboxane A₂ permeability TXA₂ Leukotriene E4 (LTE4) Ss Cigises vasoconstriction, promotes platelet aggregation 12-Lipoxygenase 12 lipoxigenase pathway PGD: Lipoxin A4 (LXA4) PGE₂ Lipoxin B₄ (LXB₄) Causes vasodilation, Inhibition of increased inflammation vascular permeability


SOURCES

Mast cells/basophils Neutrophils Monocytes/macrophages Endothelium Platelets

Others

MAJOR INFLAMMATORY ACTIONS

Increased vascular permeability
Leukocyte aggregation
Leukocyte adhesion
Leukocyte priming/chemotaxis
Platelet activation
Stimulation of other
mediators (LT, O₂•)

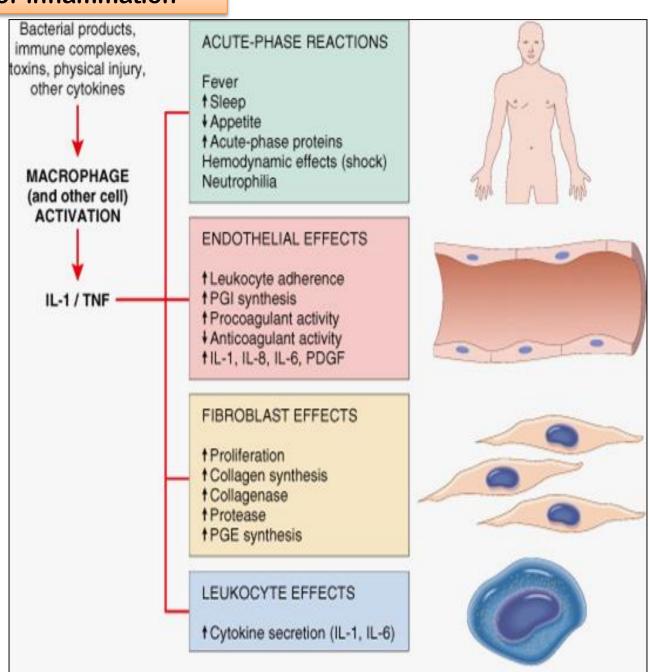
PLATELET-ACTIVATING FACTOR

Chemical Mediators of Inflammation

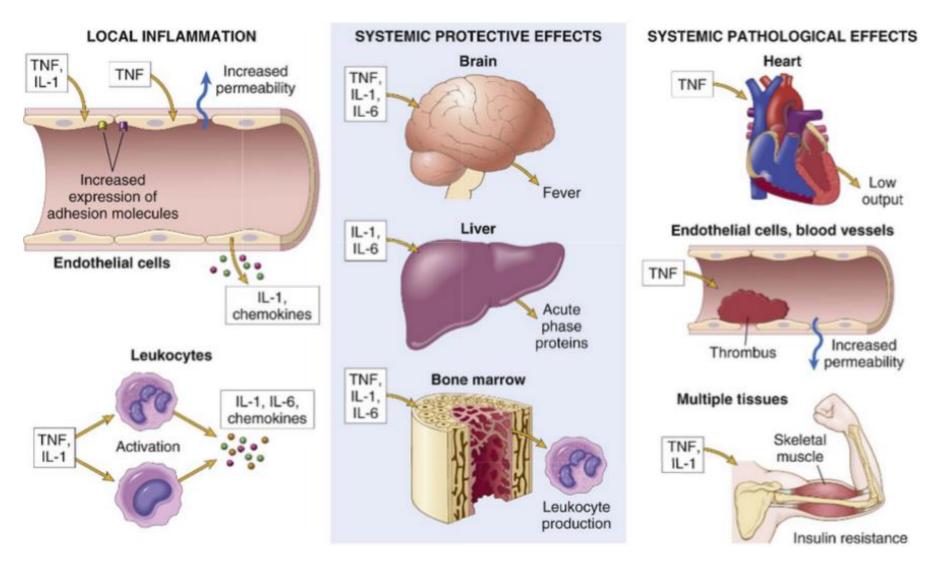
Cell-Derived

Plasma-Protein-Derived

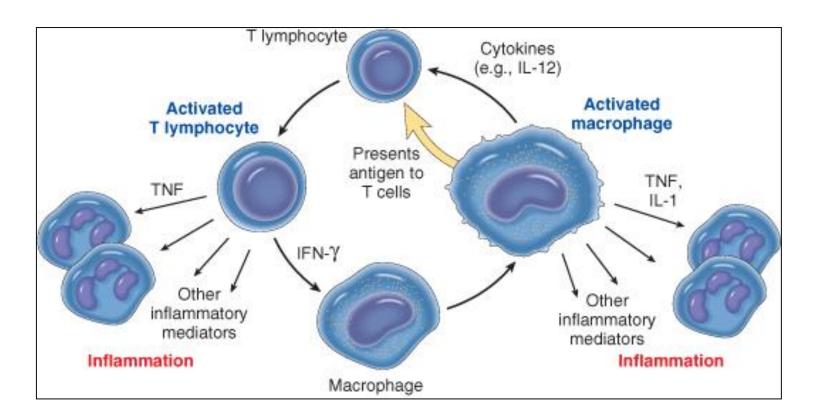
Cytokines


Polypeptides

Actions:


Involved in early immune and inflammatory reactions

Some stimulate bone marrow precursors to produce more leukocytes


Cytokine of Acute inflammation: Interleukin (IL-1) & TNF

Major roles of cytokines in acute inflammation

Cytokines of Chronic Inflammation: Interferon-γ (INF- γ) & Interleukin (IL-12)

Activated lymphocytes and macrophages influence each other and also release inflammatory mediators that affect other cells.

Chemical Mediators of Inflammation

Call-Derived

Plasma-Protein-Derived

Chemokines

Small proteins

They are chemoattractants for leukocytes

Main functions:

Leukocyte recruitment & activation in inflammation

Normal anatomic organization of cells in lymphoid and other tissues

Neuropeptides

Chemical Mediators of Inflammation

Cell-Derived

Plasma-Protein-Derived

Reactive Oxygen Species

Synthesized via

NADPH oxidase pathway

Source:

Neutrophils and Macrophages

Stimuli of release:

Microbes

Immune complexes

Cytokines

Action:

Microbicidial (cytotoxic) agent

Chemical Mediators of Inflammation

Cell-Derived

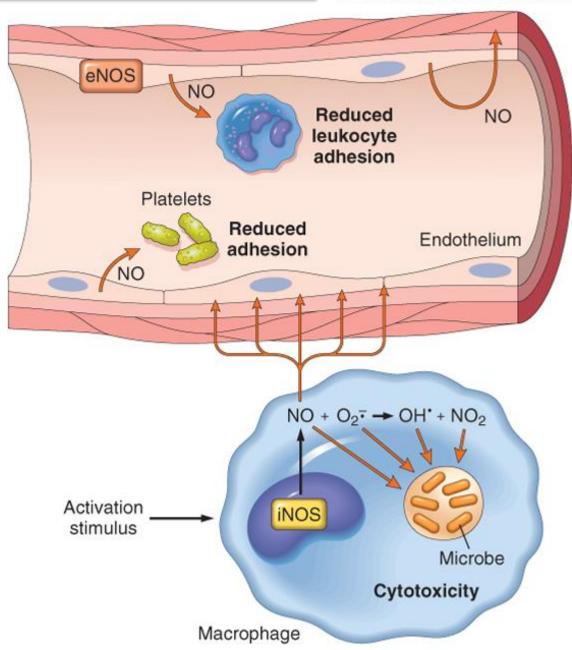
Plasma-Protein-Derived

Nitric Oxide (NO)

Short-lived

Soluble free-radical gas

Functions:


Vasodilation

Antagonism of platelet activation (adhesion, aggregation, & degranulation)

Reduction of leukocyte recruitment

Microbicidial (cytotoxic) agent (with or without ROS) in activated macrophages

Vascular smooth muscle relaxation and vasodilation

© Elsevier. Kumar et al: Robbins Basic Pathology 8e - www.studentconsult.com

Chemical Mediators of Inflammation

Lysosomal Enzymes of Leukocytes

Neutrophils & Monocytes

Enzymes:

Acid proteases

Neutral proteases (e.g. elastase, collagenase, & cathepsin)

Their action is checked by:

Serum antiproteases (e.g. α₁-antitrypsin)

Chemical Mediators of Inflammation

Cell-Derived

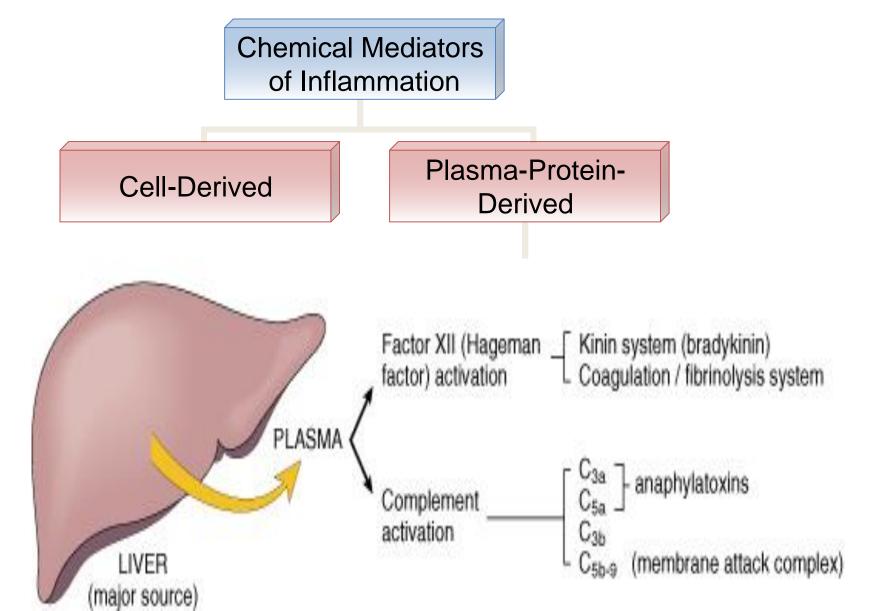
Plasma-Protein-Derived

Neuropeptides

Small proteins

Secreted by nerve fibers mainly in lung & GIT

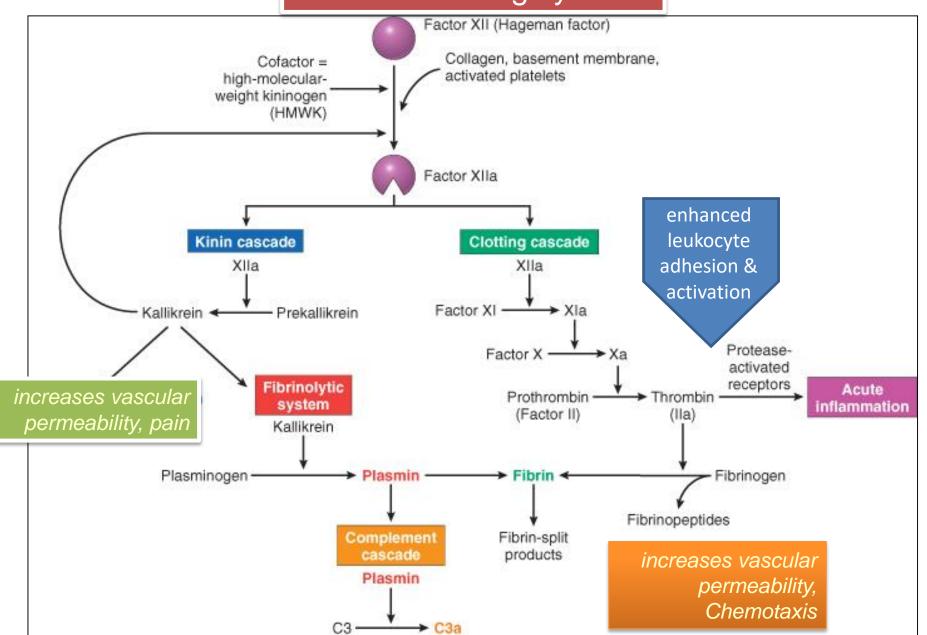
Initiate inflammatory response

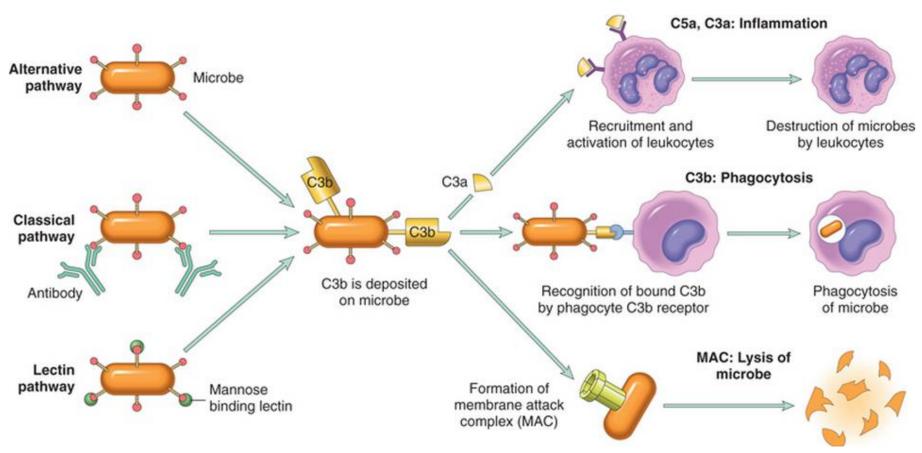

e.g. Substance P:

Transmits pain signals

Regulates vessel tone

Modulates vascular permeability


Neuropeptides


PLASMA PROTEASES

- A variety of phenomena in the inflammatory response are mediated by plasma proteins that belong to three interrelated systems
 - 1. Kinin
 - 2. the complement
 - 3. clotting systems

Kinin & clotting systems

Complement System

Complement protein

C3a & C5a → Increase vascular permeability (anaphylatoxins)

C5a → Chemotaxis

C3b → Opsonization

C5-9 → membrane attack complex

3. Chemical mediators of inflammation			
Role of Mediators in Different Reactions of Inflammation	Vasodilation	Prostaglandins Histamine Nitric oxide	
	Increased vascular permeability	Vasoactive amines Bradykinin Leukotrienes C4, D4, E4 PAF Substance P	
	Chemotaxis, leukocyte recruitment and activation	C5a Leukotriene B4 Chemokines IL-1, TNF Bacterial products	
	Fever	IL-1, TNF Prostaglandins	
	Pain	Prostaglandins Bradykinin	
	Tissue damage	Neutrophil and macrophage lysosomal enzymes Oxygen metabolites Nitric oxide	

Mediators	Source	Principal Actions
Cell-Derived:		
Histamine	Mast cells, basophils, platelets	Vasodilation, increased vascular permeability, endothelial activation
Serotonin	Platelets	Vasodilatation, increased vascular permeability.
Prostaglandins	Mast cells, leukocytes	Vasodilatation, pain, fever.
Leukotrienes	Mast cells, leukocytes	Increased vascular permeability, chemotaxis, leukocyte adhesion and activation.
Platelet- activating factor	Leukocytes, endothelial cells	Vasodilatation, increased vascular permeability, leukocyte adhesion, chemotaxis, degranulation, oxidative burst
Reactive oxygen species	Leukocytes	Killing of microbes, tissue damage
Nitric oxide	Endothelium, macrophages	Vascular smooth muscle relaxation; killing of microbes
Cytokines (e.g. TNF, IL-)	Macrophages, lymphocytes Endothelial cells, mast cells	Local endothelial activation (expres-sion of adhesion molecules), systemic acutephase response in severe infections, septic shock