

Prof. Hanan Hagar

A RECEPTOR

1. Recognition

2. Reception

3. Transduction

4. Response

A RECEPTOR structure

- Ligand recognition site
- Inner catalytic domain

RECEPTOR FAMILIES

Type I (Ion Channel-Linked receptors)

Type II (G-Protein coupled receptors)

Type III (Enzyme-Linked receptors)

Type IV (Receptors linked to gene transcription)

TYPE I: Ion Channel-Linked receptors Ligand gated ion channels Ionotropic receptors

- Located at cell membrane
- Directly activated by ligand binding
- Directly related to ion channels.
- Involved in very fast synaptic transmission.
- Response occurs in milliseconds.
- E.g. Nicotinic receptors activated by acetylcholine

Channel-Linked Receptor

Ionotropic Receptor

Ligand-Gated-Ion Channel

e.g. nicotinic acetycholine receptor that is activated by occupancy of a ligand as acetycholine.

Type II: G-Protein coupled receptors Metabotropic Receptor

- The largest family that accounts for many known drug targets
- Located at cell membrane
- Coupled to intracellular effectors via G-protein
- Response through ion channels or enzymes.
- Involved in rapid transduction
- Response occurs in seconds.
- E.g. Muscarinic receptors of Ach
- E.g. Adrenergic receptors of Noradrenaline

G-protein

- Regulatory proteins
- Regulate guanine nucleotides GDP, GTP.
- Comprise of three subunits $(\alpha\beta\gamma)$, α subunits possess GTPase activity
- When the **trimer** binds to agonist-occupied receptor , the α -subunit dissociates & is then free to activate an effector.
- Activation of the effector is terminated when the bound GTP molecule is hydrolyzed the bound GTP to GDP which allow α -subunit to recombine with $(\beta \gamma)$ and returns to its inactive state.

Targets for G-proteins

Ion channels

e.g. muscarinic receptors in heart

Ach acts upon muscarinic receptors to produce

decrease in heart rate

How?

opening of K-channel and increase K efflux (hyper-polarization).

Targets for G-proteins **Enzymes**

- Adenyl cyclase enzyme (AC)Cyclic AMP system (cAMP)
- Phospholipase C enzyme
 Inositol phosphate system (IP3+DAG)

cAMP= cyclic adenosine monophosphate IP3 = inositol triphosphate DAG= diacylglycerol

Adenyl cyclase system (AC)

Inositol phosphate system Phosphoinositol diphosphate (PIP2) **Phospholipase C G** Protein **Diacylglycerol Inosito triphosphate** (DAG) IP3 Increase intracellular **Protein kinase C** calcium (PKC) Secretion of exocrine Ion channels glands **Smooth muscle** Increase in heart rate contraction Smooth muscle contraction

PLC= Phospholipase-C IP3 =Inositol tri phosphate E= Ezyme PIP2 =Phosphotiydl inositol 4,5 di phosphate

DAG = Diacylglycerol

PKC = Phosphokinase -C

Are the Most Abundant Type

Different Classes of Receptors

<u>cholinergic R</u> (Ach)

 \rightarrow m

Adrenergic R (NA) $\rightarrow \alpha \& \beta$

Different Receptors Subtypes

m Ach; m₁, m₂, m₃, m₄ β Adrenergic receptors; β_1 , β_2 , β_3

Difference in their related G-Protein Classes

Classes of G protein

Divided according to their α-subunits into G_s, G_i and G_a

G_s and **G**_i produce, respective, stimulation and inhibition of **AC**

G_q is linked to activation of Phospholipase C system

Receptors are selective to α subunit & effector with which they couple

ADRENOCEPTORS

 a_1 Adrenoceptors couple to G_q to stimulate PLC. α_2 Adrenoceptors couple to G_i to inhibit AC. $\beta_{1\&2}$ Adrenoceptors couple to G_s to stimulate AC

CHOLINERGIC RECEPTORS

M₁ & M₃ Ach receptors couple to G_q to stimulate PLC M₂ & M₄ Ach receptors couple to G_i to inhibit AC

Type III (Enzyme-Linked receptors) (Tyrosine Kinase-linked receptor)

- Located at cell membrane
- Linked to enzyme (with intrinsic enzymatic activity)
- Response occurs in minutes to hours.
- Involved in response to hormones, growth factors.
- They control many cellular functions as metabolism and growth.

Type III (Enzyme-Linked receptors) (Tyrosine Kinase-linked receptor)

- Activation of Type III receptors results in
 - Activation of kinases as tyrosine kinase with phosphorylation of tyrosine residue on their substrates and activation of many intracellular signaling pathways in the cell.
 - O E.g. Insulin receptors

Insulin receptors

Type IV: Gene transcription receptors Nuclear receptors

- Located intracellularly
- Directly related to DNA (Gene transcription).
- Activation of receptors either increase or decrease protein synthesis
- Response occurs in hours or days and persists longer.
- Their natural ligands are lipophylic hormones; steroids, thyroids, estrogen.

Type IV: Gene transcription receptors

They possess an area that recognizes specific <u>DNA</u> sequence in the nucleus which can bind it. This sequence is called a <u>Responsive Element [RE]</u>.

This means that the activated receptors are acting as TRANSCRIPTION FACTORS [TF] → expressing or repressing target genes.

Type IV: Gene transcription receptors

RECEPTOR FAMILIES

	Type I	Type II	Type III	Type III
Location	Membrane	Membrane	Membrane	Nucleus
Coupling	Direct	G-Protein	Direct	Via DNA
Synaptic transmission	Very Fast	fast	slow	Very slow
Response	milliseconds	Seconds	minutes	Hours or days
Examples	Nicotinic receptors	Muscarinic receptors Adrenergic receptors	Insulin receptors	Estrogen Steroid receptors
Effectors	channels	Channels/ enzymes	Enzymes	DNA

SIGNALING MECHANISMS

A Ligand-gated ion channels

Example:

Cholinergic nicotinic receptors

B G protein-coupled receptors

Example:

 α and β adrenoreceptors

Enzyme-linked receptors

Example:

Insulin receptors

D Intracellular receptors

Example:

Steroid receptors

