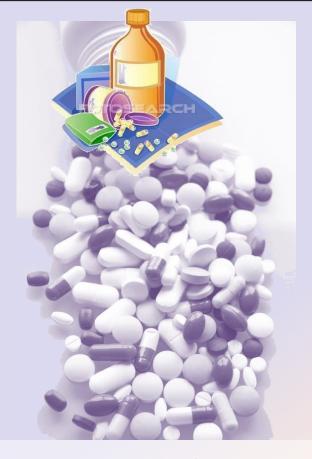

Tolerance and Adverse drug reactions

Prof. Yieldez Bassiouni

Tolerance and Desensitization

Adverse drug reactions [ADR]


Adverse drug reactions [ADR]

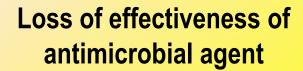
+ Harmful or seriously unpleasant effects occurring at doses intended for therapeutic effects.

Distinguish difference between tolerance and desensitization (tachyphylaxis) and reasons for their development

Recognize patterns of adverse drug reactions (ADRs)

Tolerance and Desensitization

Diminution of a response


Rapid, in the course of few minutes

Gradual in the course of few days to weeks

Tachyphylaxis / Desensitization

Tolerance

These should be distinguished from

Resistance

Tolerance

 Tolerance may be defined by either of the following:

a. a need for markedly increased amounts of the substance to achieve intoxication or desired effect

b. markedly diminished effect with continued use of the same amount of the substance

Reasons for development of tolerance

Pre-receptor events

Events at receptors

Post receptor events

 ↓ drug availability at the relevant receptors due to pharmaco-kinetic variables

Drug becomes:

- > metabolized or excreted
- < absorbed altered distribution to tissues

e.g. Barbiturates (enzyme inducers) ↑ metabolism of Contraceptive pills = ↓ it availability

Nullification of drug response by a physiological adaptive homeostatic response

Antihypertensive effects of ACEIs become nullified by activation of renin angiotensin system (RAS) by NSAIDs

Loss of therapeutic efficacy

Refractoriness

Agonist Receptor Activated receptor GRK Phosphorylated receptor Arrestin Arestin-receptor complex Loss of Endocytosis G-protein coupling DOWN REGULATION **BINDING ALTERATION**

DR DEVELOPMENT OF TOLERANCE

G protein-coupled receptor kinases (GRKs): regulate the activity of GPCRs by phosphorylating their intracellular domains after their associated G proteins have been released and activated.

Arrestin is a protein that prevent the re-association of the G proteins with their receptors, thereby preventing reactivation of the signaling pathway.

Post-receptors events

Down regulation

↓ number of receptors.

Isoprenaline

activation to β
receptors → ↑ R
recycling by
endocytosis

[structural defect]

What is Addiction?

- It is well known that the initial decision to use drugs is voluntary
- Addiction is a chronic, relapsing brain disease characterized by:
- Compulsive behavior of a person (loss of control)
- Continue taking drugs despite their many adverse health and negative consequences
- > Craving: dysphoric and feels very bad
- Two components involved:
- 1- Physical dependence (withdrawal symptoms), neurons adapt to the repeated drug exposure and only function normally in the presence of the drug.
- 2- Psychological dependence (craving)

Drugs of addiction

Stimulants

- stimulate the central nervous system
- amphetamines, cocaine, nicotine

Depressants

- depress the CNS
- alcohol, barbiturates, benzodiazepines

Analgesics

- powerful painkillers
 - from opium poppy, morphine, heroin

- Hallucinogens dramatically alter perception
 - LSD, cannabis, Marijuana

Adverse drug reactions [ADR]

Adverse drug reactions [ADR]

Harmful or seriously unpleasant effects occurring at doses intended for therapeutic effects.

Types of ADR

Type A

Augmented

Predictable

Occurs consequent but in excess of drug primary pharmacological effect. Of quantitative nature

Type B

Bizzare

Unpedictable

Occurs different [heterogenous / idiosyncratic] to known drug pharmacological effect usually due to patient's genetic defect or immunological response. Of gualitative nature

Type C

Continuous

Occurs during chronic drug administration

Type E

End-of-Use

Occurs upon sudden stoppage of chronic drug use due to existing adaptive changes present

Type D

Delayed

Occurs after long period of time even after drug stoppage

TYPES OF ADR

Type C

Continuous

- e.g. Patients can develop
- 1. Osteoporosis secondary to chronic corticosteroid intake
- 2. Dependence
- a. Psychological [Craving] as by cannabis
- b. Psychological [Craving] + Physical withdrawal manifestations (syndrome)
 - = Addiction as by morphine

End-of-Use

Type E

- e.g. Patients on stoppage of
- Clonidine develop rebound hypertension
- Morphine develop withdrawal syndrome

Type D

Delayed

Long after patients can show:

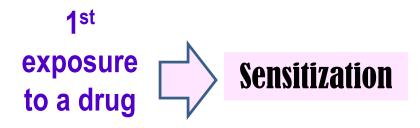
- Teratogenicity after retinoids
- Carcinogenicity after tobacco smoking

Comparison between type A & B -ADRs

	Type A Augmentation	Type B Idiosyncratic
Pharmacological predictability	Yes	No
Nature	Quantitative [extension of pharmacology effect]	Qualitative [immune or genetic base]
Dose- dependent	Yes (dose response relationship present)	No (dose response relationship absent)
Onset of symptoms	Usually Rapid	Usually delayed
Incidence and morbidity	High	Low
Mortality	Low	High
Treatment	Dose adjustment or Substitute by > selective + Antagonize unwanted effect of 1st drug	Stop drug + Symptomatic treatment
Example	Bradycardia →β- ADR Blockers Hemorrhage →Warfarin	Apnea → succinylcholine Thrombocytopenia → Quinine

Examples of TYPE A & B -ADR

Examples of TYPE A & B -ADR


Drug	Type A	Type B
Chlorpromazine	Sedation	Cholestatic jaundice
Naproxen	GIT haemorrhage	Agranulocytosis
Phenytoin	Ataxia	Hepatitis, lymphadenopathy
Thiazides	Hypokalaemia	Thrombocytopenia
Quinine	Tinnitus	Thrombocytopenia
Warfarin	Bleeding	Breast necrosis

Genetics Variation / defect Immunological Predisposition

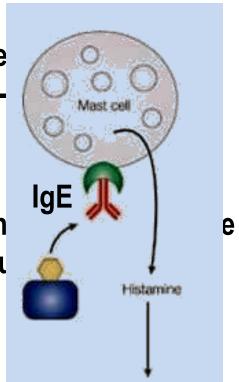
TYPE B

Immunological Predisposition

The drug or its bi-product [protein macromolecules or haptens] react as antigens and provoke immune response that results in damage to the tissue→ Hypersensitivity Reaction

Classification of hypersensitivity reactions

Type I – Immediate (atopic, or anaphylactic)


Type II – Cytotoxic

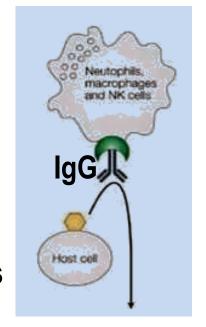
Type III – Immune complex

Type IV – Cell-mediated or delayed

Type I hypersensitivity: Anaphylactic

- Type I hypersensitivity is an allergic reaction provoked by reexposure to a specific antigen
- Fast response which occurs in minutes, rathe hours or days. The reaction usually takes 15 the time of exposure to the antigen.
- The reaction is mediated by IgE antibodies an immediate release of histamine, serotonin, let tissue mast cells or blood basophils

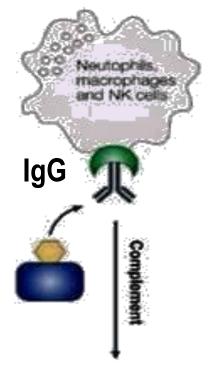
 The reaction may be either local or systemic. Symptoms vary from mild irritation to sudden death from anaphylactic shock.


Some examples:

- Allergic asthma
- Allergic conjunctivitis
- Allergic rhinitis "hay fever"
- Urticaria (hives)
- Anaphylaxis

- may be caused by Penicillin, Streptomycin

Type II hypersensitivity: Cytotoxic


- Antibody-dependent
- The antigens may be endogenous or exogenous chemicals (haptens) which can attach to cell membranes

- The antibodies (IgM or IgG) produced by the immune response bind to antigens on the patient's own cell surfaces that is perceived by the immune system as foreign, leading to cellular destruction.
- The reaction takes hours to a day
- Examples: Drug-induced haemolytic anemia, thrombocytopenia by Penicillin, Quinidine

Type III hypersensitivity: Immune complex

- Soluble immune complexes (aggregations of antigens and IgG and IgM antibodies) form in the blood, are not completely removed by macrophages and are deposited in various tissues (typically the skin, kidney and joints)
- The reaction takes hours to days to develop
- Example: Serum sickness (fever, arthritis, enlarged lymph nodes, urticaria)
- by Sulphonamides, Penicillin, Streptomycin

Type IV Hypersensitivity: Cell-mediated

- also known as delayed type hypersensitivity as the reaction takes two to three days to develop.
- Unlike the other types, it is not antibody- mediated but rather is a type of cell-mediated response.
- Cytotoxic T cells cause direct damage whereas helper T cells secrete cytokines that attracts inflammatory cell infiltrate
- Example: Contact dermatitis by local anesthetic creams, anti-histamine creams, topical antibiotics

GOOD LUCK