Rhododendrons, North Carolina

ملالتمن للديم

Hemostasis

Dr. Abeer Al-Ghumlas

At the end of this lecture student should be able to:

- 1. Recognize different stages of hemostasis
- 2. Describe formation and development of platelet
- 3. Describe the role of platelets in hemostasis.
- 4. Recognize different clotting factors
- 5. Describe the cascade of clotting .

- 5. Describe the cascade of intrinsic pathway.
- 6. Describe the cascade of extrinsic and common pathways.
- 7. Recognize the role of thrombin in coagulation
- 8. Recognize process of fibrinolysis and function of plasmin

Hemostasis: the spontaneous arrest of bleeding from ruptured blood vessels

Mechanisms:

- 1. Vessel wall
- 2.Platelet
- 3. Blood coagulation
- 4. Fibrinolytic system

Hemostatic Mechanisms- cont

1.<u>Vessel wall</u>

Immediately After injury a localized

Vasoconstriction

Mechanism:

٠

- Systemic release of adrenaline
- Nervous factors
- local release of thromboxane A2
 & 5HT by platelets

PLATELET PHASE

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Hemostatic Mechanisms:

- Mechanisms:
 - Vessel wall
 - Platelet
 - Blood coagulation
 - Fibrinolytic system

<u>Platelet haemostatic plug</u> <u>formation</u>

c)

d)

Platelets (PLT)

Thrombocytes

Platelets - cont

- small disc shaped cells
- Platelet count = 150×10³-300×10³/ml,
- life span 8-12 days
- Contain high calcium content & rich in ADP
- Active cells contain contractile protein,

platelets

- <u>Thrombocytes</u> are
 Fragments of megakaryocytes in the bone marrow
 - •<u>Regulation</u> of thrombopoiesis By: Thrombombopoietin

Platelets - cont.

<u>Platelet haemostatic plug</u> <u>formation</u>

Platelet Functions

Begins with Platelet activation

Platelet Activation

- Adhesion
- · Shape change
- Aggregation
- Release
- Clot Retraction

Platelet Adhesion

- Exposed collagen attracts platelets
- Platelets stick to exposed collagen underlying damaged endothelial cells in vessel wall

- •
- Platelets activated by adhesion Extend projections to make contact with • each other

Platelet Release Reaction

•Activated platelets release Serotonin, ADP & Thromboxane A2

- Serotonin & thromboxane A2 are vasoconstrictors decreasing blood flow through the injured vessel.
- ADP & Thromboxane A2 (TXA2) → ↑ the stickiness of platelets → ↑ Platelets aggregation → plugging of the cut vessel

Activated Platelets

Secrete:

- 1.5HT \rightarrow vasoconstriction
- 2. ADP
- 3. Platelet phospholipid (PF3) → clot formation
- 4. Thromboxane A2 (TXA2) is a prostaglandin formed from arachidonic acid Function:
 - vasoconstriction
 - Platelet aggregation

(TXA2 inhibited by aspirin)

Platelets aggregation

Platelet Aggregation

 Activated platelets stick together and activate new platelets to form a mass called a platelet plug

 Plug reinforced by fibrin threads formed during clotting process

Platelet shape change and Aggregation

Platelet Activation

• <u>Clot Retraction</u>:

Myosin and actin filaments in platelets are stimulated to contract during aggregation further reinforcing the plug and help release of granule contents

Platelet function

Adhesion

Activation

Aggregation

Secretion

□ Intact endothelium secret prostacyclin and NO which inhibit aggregation

(a) Damaged blood vessel endothelium

© 2011 Pearson Education, Inc.

(b) Normal blood vessel endothelium

© 2011 Pearson Education, Inc.

Platelet plug formation

Memostatic Mechanisms:

- Mechanisms:
 - Vessel wall
 - Platelet
 - Blood coagulation
 - Fibrinolytic system

Clotting Factors

Factors	Names
I	Fibrinogen
II	Prothrombin
III	Thromboplastin
IV V	Calcium
VII	Labile factor
VIII	Stable factor
IX	Antihemophilic factor A
×	Antihemophilic factor B
XI	Stuart-Power factor
	Plasma thromboplastin antecedent
XII	(PTA)
XIII	Hagman factor
	Fibrin stablizing factors

Blood coagulation (clot formation)

- A series of biochemical reactions leading to the formation of a blood clot
- This reaction leads to the activation of thrombin enzyme from inactive form prothrombin
- Thrombin will change fibrinogen (plasma protein) to fibrin (insoluble protein)
- Prothrombin (inactive thrombin) is activated by a long intrinsic or short extrinsic
 ³⁷ pathways

The Intrinsic Pathway

Thrombin

•

Critical Role of Thrombin

Thrombin is the link between vascular injury, coagulation, and platelet activation

- Thrombin changes fibrinogen to fibrin
- Activates factor V
 - Thrombin is essential in platelet morphological changes to form primary plug
 - Thrombin stimulates platelets to release ADP & thromboxane A2; both stimulate further platelets aggregation

Intrinsic pathway

- The trigger is the activation of factor XII by contact with foreign surface, injured blood vessel, and glass.
- Activate factor (XIIa) will activate XI
- Xla will activate IX
- IXa + VIII + platelet phospholipid + Ca activate X
- Following this step the pathway is common for both

Extrinsic pathway

- Triggered by material released from damaged tissues (tissue thromboplastin)
- tissue thromboplastin + VII + Ca \rightarrow activate X

<u>Common pathway</u>

- Xa + V +PF3 + Ca(prothrombin activator) it is a proteolytic enzyme activate prothrombin → thrombin
- Thrombin act on fibrinogen →insoluble thread like fibrin
- Factor XIII + Ca \rightarrow strong fibrin (strong clot)

Activation Blood Coagulation

• Intrinsic Pathway: all clotting factors present in the blood

Extrinsic Pathway: triggered by tissue factor

Common Pathway

P* = phospholipid from platelets

<u>Platelet haemostatic plug</u> <u>formation</u>

Hemostasis: the spontaneous arrest of bleeding from ruptured blood vessels

Mechanisms:

- 1. Vessel wall
- 2. Plattelett
- 3. Blood congulation
- 4. Fibrinolyttic system ((Fibrinolysis))

Fibrinolysis

- Formed blood clot can either become fibrous or dissolve
- Fibrinolysis (dissolving) = Break down of fibrin by naturally occurring enzyme plasmin therefore prevent intravascular blocking
- There is balance between clotting and fibrinolysis
 - Excess clotting →blocking of Blood
 Vessels
 - Excess fibrinolysis →tendency for bleeding

- Plasmin is present in the blood in inactive form plasminogen
- Plasmin is activated by tissue plasminogen activators (t-PA) in blood.
- Plasmin digest intra & extra vascular deposit of Fibrin →fibrin degradation products (FDP)
- Unwanted effect of plasmin is the digestion of clotting factors

- Plasmin is controlled by:
 - Plasminogen Activator Inhibitor (PAI)
 - Antiplasmin from the liver
- Uses:
 - Tissue Plasminogen Activator (t-PA) used to activate plasminogen to dissolve coronary clots

Fibrin

Fibrin degradation product

Haemostatic Mechanisms

Bleeding disorders

- Excessive bleeding can result from:
 - Platelet defects:
 deficiency in number (thrombocytopenia)
 or defect in function.
 - <u>Coagulation factors</u> <u>defect:</u>
 Deficiency in coagulation factors (e.g. hemophilia).
 Vitamin K deficiency.

Cont. bleeding disorders

- Hemophilia:
 - $-\uparrow$ bleeding tendency.
 - X-linked disease.
 - Affects males.
 - 85% due to FVIII deficiency (hemophilia A), and 15% due to FIX deficiency (hemophilia B).
- Vitamin K deficiency & liver disease:
 - Almost all coagulation factors are synthesized in the liver.
 - Prothrombin, FVII, FIX, & FX require vitamin K for their synthesis.

