PHARMACODYNAMICS I MECHANISMS OF DRUG ACTION

Ali Alhoshani, B.Pharm, Ph.D. <u>ahoshani@ksu.edu.sa</u> Office: 2B 84

Mechanisms of Drug action

By the end of this lecture, you should:

- Identify different targets of drug action
- Differentiate between their patterns of action; agonism versus antagonism
- Elaborate on drug binding to receptors

What is Pharmacodynamics?

Pharmacodynamics is a branch of pharmacology that deals with the study of the biochemical and physiological effects of drugs and their mechanisms of action.

What are the mechanisms of drug action?

Drugs can produce their actions by:

- Binding with biomolecules (Receptor-mediated mechanisms):
 - Biomolecules = Targets=Receptors
 - Mostly protein in nature (protein target).
- 2) Non receptor-mediated mechanisms Physiochemical properties of drugs.

What are the mechanisms of drug action?

Drugs can produce their actions by:

- Binding with biomolecules (Receptor-mediated mechanisms):
 - Protein targets for drug binding
 - Physiological receptors
 - Enzymes
 - Ion channels
 - Carriers
 - Structural protein

lon channels

e.g. Sulfonylurea drugs (antidiabetic drugs): block K⁺ outflux via the K channels in pancreatic beta cells resulting in opening of calcium channels and insulin secretion.

Carrier molecules

- The drug binds to such molecules altering their transport ability
- Responsible for transport of ions and small organic molecules between intracellular compartments, through cell membranes or in extracellular fluids.
- □ e.g., Na+,K+-ATPase inhibitor

Carrier molecules

Digoxin: blocks Na efflux via <u>Na pump</u>; used in treatment of heart

Carrier molecules

- Cocaine: blocks transport or reuptake of <u>catecholamines</u> (dopamine) at synaptic cleft
- The dopamine transporter can no longer perform its reuptake function, and thus <u>dopamine</u> accumulates in the <u>synaptic cleft</u>.

Carrier molecules

□ Effect of cocaine

Binding Forces between drugs and receptors

- Ionic bond.
- Van-Dar-Waal.
- Hydrogen bond.
- Covalent bond.

□ Affinity

- Ability of a drug to combine with the receptor.
- $D + R \longrightarrow D R \text{ complex} \longrightarrow Effect.$
- Efficacy (Intrinsic Activity)
 - Capacity of a drug receptor complex (D-R) to produce an action.
 - □ is the maximal response produced by a drug (E max).

Agonist

is a drug that combines with receptor and elicit a response (has affinity and efficacy).

Antagonist

is a drug that combines with a receptor without producing responses. It blocks the action of the agonist (has affinity but no or zero efficacy).

e.g. atropine

Agonist and Antagonist

Agonist

Full agonist. Partial agonist Full Agonist

A drug that combines with its specific receptor to produce maximal effect by increasing its concentration (affinity & high efficacy). e.g. acetylcholine (Ach).

Agonist

Partial Agonist

combines with its receptor & evokes a response as a full agonist but produces submaximal effect regardless of concentration (affinity & partial efficacy).

- e.g. pindolol
 - A beta blocker which is a partial agonist, produces less decrease in heart rate than pure antagonists such as propranolol.

