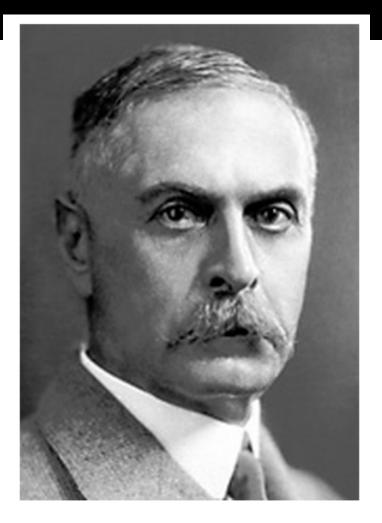


BLOOD GROUPS AND BLOOD TRANSFUSION

Prof. Shahid Habib

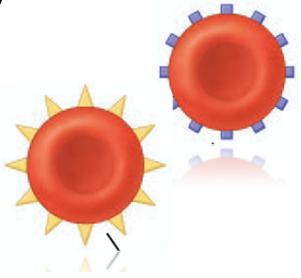

10/19/2016

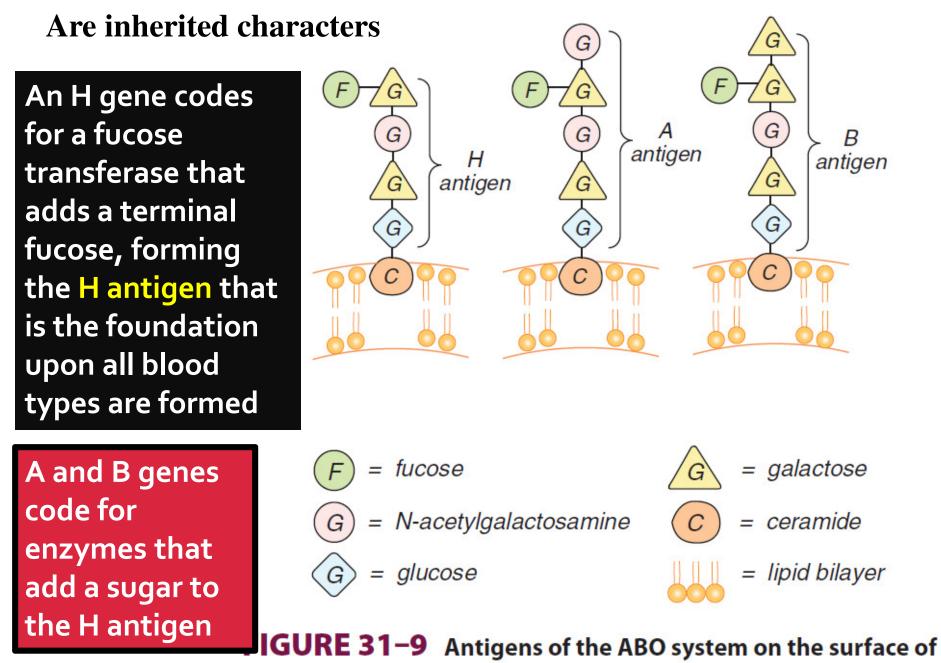
OBJECTIVES

At the end of this lecture you should be able to:

- **1.Describe ABO blood groups types.**
- 2.Recognize Agglutinin in plasma.
- 3.Describe genetic inheritance of Blood groups.
- 4. Recognize transfusion reactions.
- **5.Describe Rhesus blood groups.**
- 6.Describe causes of hemolytic disease of the newborn.

BLOOD GROUPS


KARL LANDSTEINER (1886-1943)


- Discovered ABO Blood group system in 1901
- Discovered Rh factor in 1930 along with Alexander S. Wiener
- Noble prize in Physiology or Medicine in 1930

Austrian scientist

BLOOD GROUP SYSTEMS

- Blood Groups are determined by: Antigens (glycoproteins, complex oligosaccharides that differ in their terminal sugar) present on the surface of RBCs
- About 20 blood group systems are known
 (Eg. ABO System, Rh-System MNS System, Kell System,
 Lewis System, Duffy, Lutheran, KIDD)
- Two are common
 - ABO blood group system
 - Rh (Rhesus) blood group system

red blood cells.

The ABO system:

- Depends on whether the red cells contain one, both or neither of the two blood antigens: A and B
- Four main ABO groups: A, B, AB, O

Locus of alleles responsible of ABO system is on long arm of chromosome 9 while Rh locus is on chromosome 1

Rhesus (Rh) Blood Group is Determined by:

- Presence or absence of the Rhesus antigen
 (D) on the surface of RBC:
 - Presence of D (individual is Rh+ve) [85%]
 - Absence of D (individual is Rh–ve) [15%]
- Rhesus antigens:
 - Dd, Cc, Ee (6 antigens)

Clinically most important is D

Landsteiner and Weiner in 1940 discovered other antigens in human R.B.Cs and named rhesus antigens or Rh-antigen because the same antigens are present in Rhesus monkey.

AGGLUTINOGENS & AGGLUTININS

Blood Group	Antigens on RBCs AGGLUTINOGENS	Antibodies in Serum AGGLUTININS	Genotype <u>O is recessive</u>
A	A	Anti-B	AA or AO
В	В	Anti-A	BB or BO
AB	A and B	Neither	AB
0	Neither	Both Anti-A and Anti-B	00

Antibodies in ABO & Rh Systems

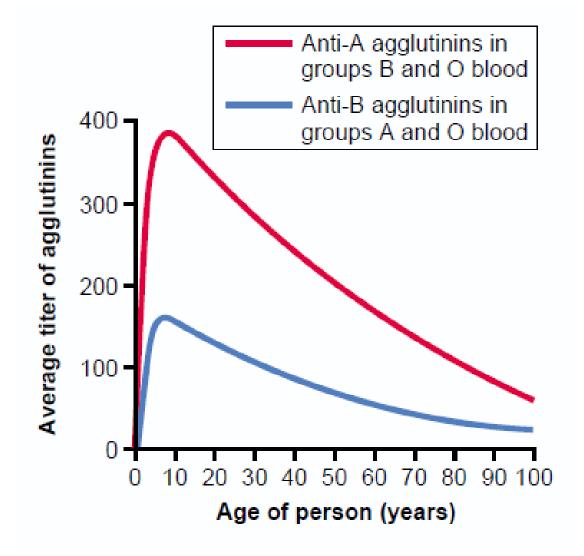
- Anti-A & Anti-B are: naturally occurring antibodies.
- Not present at birth, appear 8 weeks after birth.
- Triggered by A & B antigens in food and bacteria.
- Anti-D antibody (agglutinin):
- Is not naturally-occurring and are Acquired by:
 - Transfusion of Rh-ve individual with Rh+ve blood.
 - Rh-ve pregnancy with Rh+ve fetus.

Landsteiner Law (1900) If an agglutinogen is present on the RBC of an individual, the corresponding agglutinin must be absent in the plasma of that individual and vice-versa. This law is only applicable to ABO blood grouping system.

Inheritence of ABO system

- The ABO gene locus is located on the chromosome 9
- A and B blood groups are dominant over the O blood group
- A and B group genes are co-dominant
- Each person has two copies of genes coding for their ABO blood group (one maternal and one paternal in origin)

GENETIC DETERMINATION OF AGGLUTINOGENS


Parent	Α	B	0
Allele			
Α	AA	AB	ΑΟ
В	AB	BB	BO
0	ΑΟ	BO	00

AGGLUTININS / ANTIBODIES

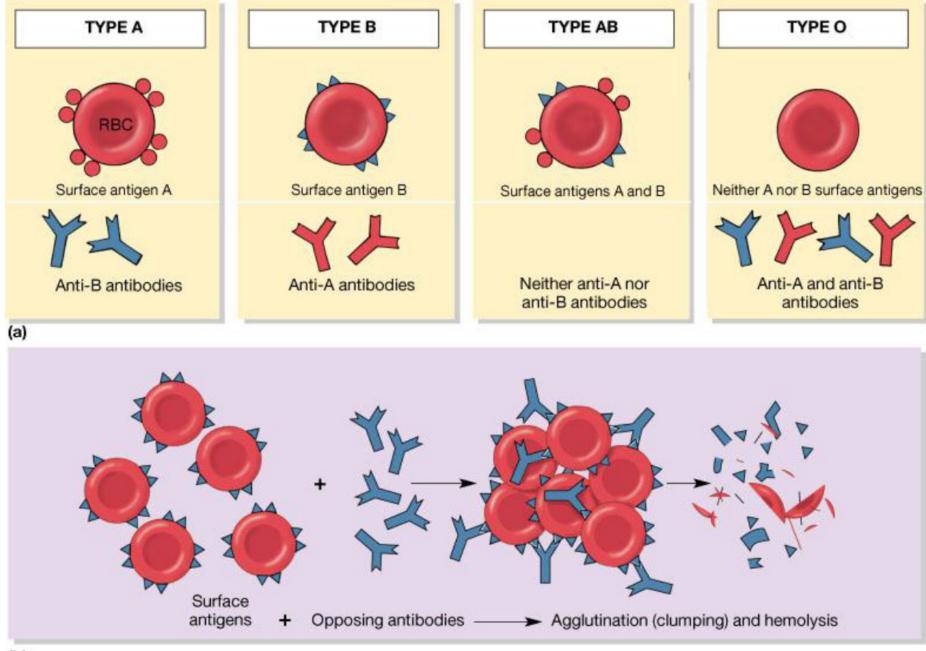
 Immunoglobulins Are proteins which appear in the plasma or body fluids in response to administration of antigens
 IqM & IqG

anti-A or anti-B antibodies are of the IgM class (large molecules) and these do not cross the placenta Rh antibodies are IgG type & can cross placenta

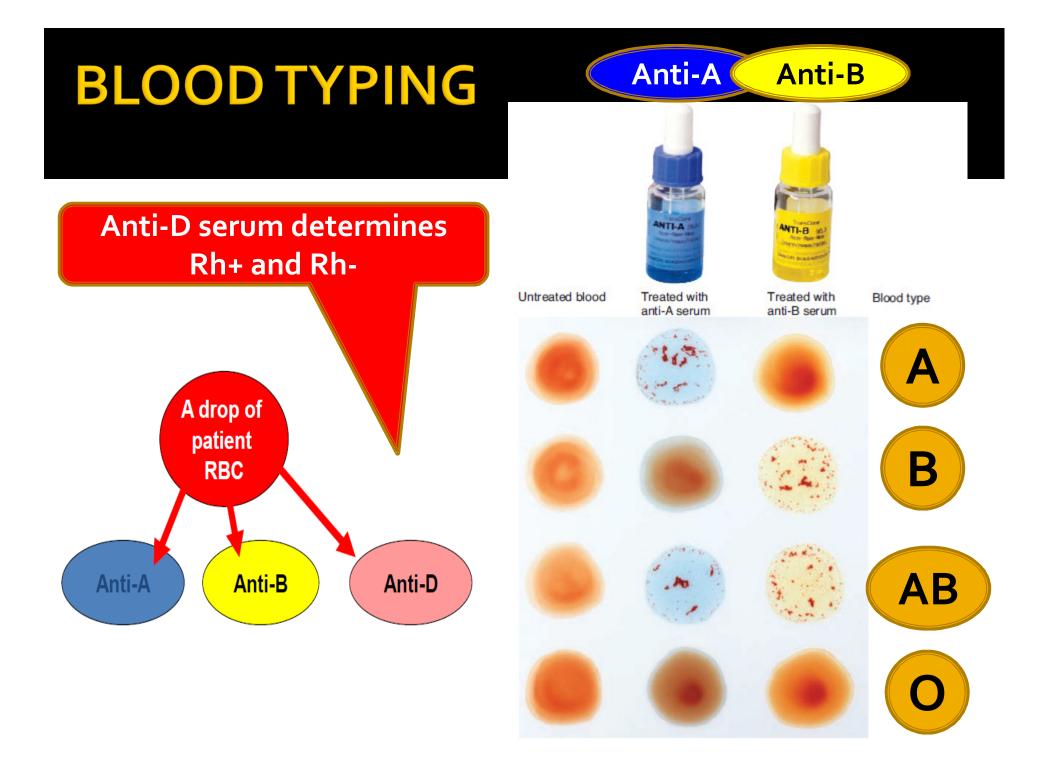
TITER OF ANTI-A& B AGGLUTININS AT DIFFERENT AGES

Two to 8 months after birth, an infant begins to produce agglutinins.

A maximum titer is usually reached at 8 to 10 years of age, and this gradually declines throughout the remaining years of life.


THE Rh IMMUNE RESPONSE

Formation of anti-Rh agglutinins


If Rh +ve blood is transfused for the first time to

Rh –ve person

Anti-Rh agglutinins develop slowly (2-4 months) Once produced they persist for years & can produce serious reactions during 2nd transfusion

(b)

Importance of blood groups

- In Blood transfusion
- In preventing hemolytic disease (Rh incompatibility)
- In paternity disputes
- In medicolegal cases
- In knowing susceptibility to disease

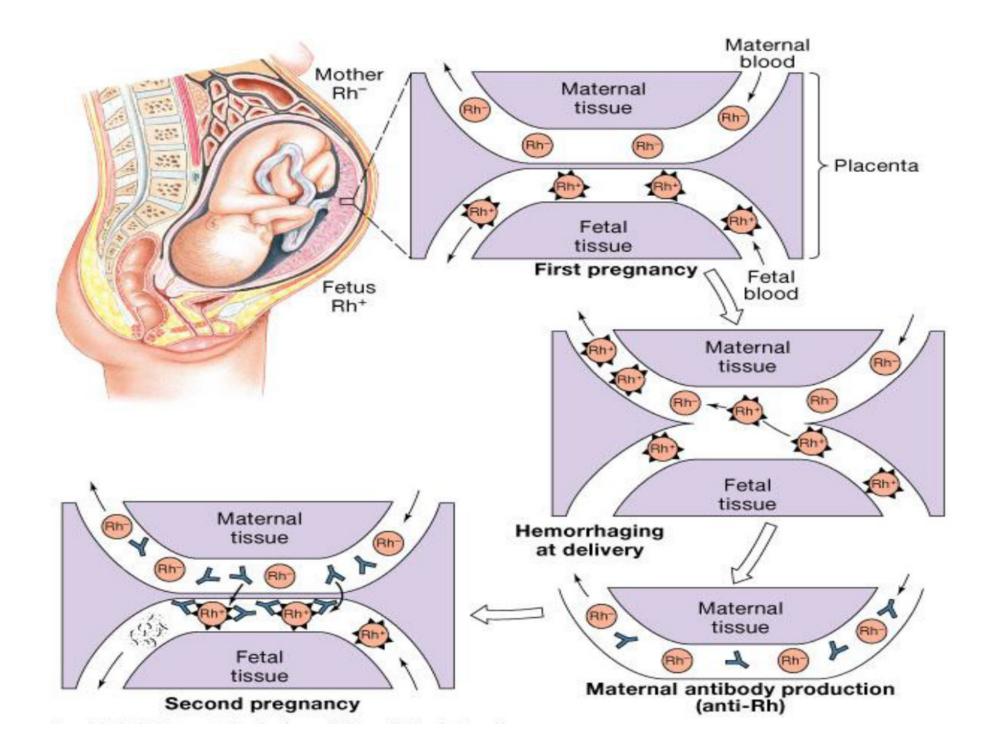
Group O- duodenal cancer Group A- Carcinoma of stomach, pancreas & salivary glands

Agglutination in transfusion reaction

- If a person with blood group A transfused with blood of group B (contains anti-A in plasma)
- The anti-A in plasma of recipient blood group B will agglutinate the transfused cell (A)
- The clumped cells plug small blood vessels
- Sometimes causes immediate hemolysis

→Transfusion reaction

Rh incompatibilty between mother and fetus


- Mother is Rh-ve and first baby is Rh+ve:
- At delivery
 - Fetal Rh+ve RBC cross to maternal blood
 - The mother will develop Anti-D after delivery.
 - First child escapes & is safe

If the mother was transfused before with Rh+ve blood before, first child will also be affected

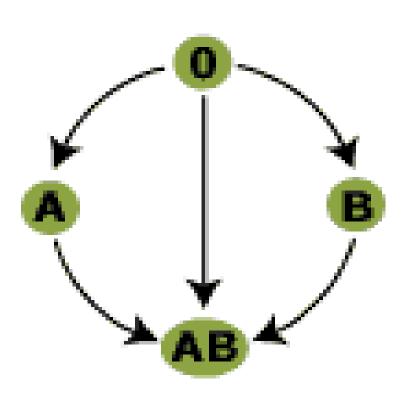
Rh incompatibilty between mother and fetus

- Second fetus
 - If Rh+ve
 - Anti-D crosses placenta and destroys fetal Rh+ve RBCs

Outcome? Hemolytic Disease of the newborn

ERYTHROBLASTOSIS FETALIS / HEMOLYTIC DISEASE OF NEW BORN

- **1. Hemolytic anemia:**
 - If severe: is treated with exchange transfusion:
 - Replace baby's blood with Rh-ve RBC (several times)
- 2. Hydrops fetalis (death in utero)
- 3. Kernicterus


Prevalence of Disease1st Pregnancy ----- 0%2nd Pregnancy ----- 33rd Pregnancy ----- 10%

Prevention:

Injecting the mother with anti-D immediately after 1st childbirth Antenatal (during pregnancy) prophylaxis

DONORS AND RECIPIENTS

 People with blood group o are called "universal donors" and people with blood group AB are called "universal receivers."

Complications of blood transfusion

- Immune reaction: Incompatible blood transfusion leading to immediate or delayed reaction, fever, haemolysis, allergic reaction
- Transmission of diseases; malaria, syphilis, viral hepatitis & Aids
- Iron overload due to multi-transfusion in case of sickle cell anemia and thalassemia.

Hazards of mismatched transfusion

2 Types

- Immediate
 - Agglutination
 - Hemolysis
 - Fever
 - Allergic reaction
 - Acute renal shutdown
 - Renal vasoconstriction
 - Circulatory shock
 - Tubular blockage

- Delayed
 - Sensitization
 - Thrombo Phlebitis

If You Have	You Can Rece	íve		
0+	0+	0–		
0-	0-			
A+	A+	A–	0+	0–
A-	A-	0–		
B+	B+	B–	0+	0–
B–	B–	0–		
AB+	AB+	AB-	0+	0–
	A+	A–	B+	B–
AB-	AB–	0–	A–	B–