



# Molecular Biology 2

- Color Index:
- Important.
- Extra Information.
- Doctors slides.

436 Biochemistry team

**Revised** by

شوق الأحمري & طراد الوكيل

# **Objectives:**

To understand DNA replication
 To know the transcription of genetic material into messenger RNA
 To get an idea about the translation of mRNA into a functional protein.

DNA is the genetic material, therefore :

1- it replicates faithfully.

2-has the coding ability (ability to transfer information) to produce proteins for all cellular functions.

#### Features of Eukaryotic DNA Replication

1- Semiconservative

2- Bidirectional with **multiple** origins of replication

Origin of replication: is a particular sequence in a genome at which replication is initiated.





#### ► 3- Primed by short stretches of RNA.

There must be a basic structure to build upon "a foundation". The enzymes for replication can't start from scratch; therefore Primers (RNA nucleotides) are used (and they are later removed)

#### 4- Semi-discontinuous

The leading strand is synthesized continuously and the lagging strand is discontinuous (in fragments)

The directions will always be 5' -> 3' (either away or into the fork).



للتذكر: هل لك سبب تلوم به ؟ لا، توبه هو بريء

### Proteins involved in DNA replication

| Name                                                                                                                          | Types                                                                                           | Functions                                                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| DNA Helicase                                                                                                                  |                                                                                                 | -An enzyme that binds to DNA sequences called Origins and unwinds DNA strands.                                  |  |
| Single-stranded DNA binding proteins                                                                                          |                                                                                                 | Prevents single strands from winding.                                                                           |  |
| DNA Primase                                                                                                                   |                                                                                                 | An enzyme that makes a short segment of RNA primer which is complementary to the DNA                            |  |
| DNA polymerases                                                                                                               | $\alpha$ (Alpha) , $\beta$ (Beta) , $\gamma$ (Gamma) , $\delta$ (Delta) , $\epsilon$ (Epsilon). | An enzyme that adds DNA nucleotides to the RNA primerProofreads bases added and replaces incorrect nucleotides. |  |
| DNA ligase                                                                                                                    |                                                                                                 | An enzyme that forms bonds between the sugar-phosphate backbone.                                                |  |
| Topoisomerases                                                                                                                | Topoisomerases I                                                                                | (cut one of the DNA strands)                                                                                    |  |
|                                                                                                                               | Topoisomerases II                                                                               | (cut both of the DNA strands)                                                                                   |  |
| Telomerases                                                                                                                   |                                                                                                 | An enzyme that adds nucleotides to telomeres (a reign at the end of a chromosome)                               |  |
| Eukaryote enzymes are different than prokaryote enzymes. $*****$ The Pol $\alpha$ complex (pol $\alpha$ -DNA primase complex) |                                                                                                 |                                                                                                                 |  |

### EUKARYOTIC DNA REPLICATION (continued)

• Figure 29.23

Activities of eukaryotic DNA polymerase (pol)  $*3' \rightarrow 5'$  exonuclease activity.

| POLY-<br>MERASE           | FUNCTION                                                                      | PROOF-<br>READING* |
|---------------------------|-------------------------------------------------------------------------------|--------------------|
| <b>Pol α</b><br>(alpha)   | <ul> <li>Contains primase</li> <li>Initiates DNA<br/>synthesis</li> </ul>     | _                  |
| <b>Pol</b> β<br>(beta)    | Repair                                                                        | -                  |
| <b>Pol γ</b><br>(gamma)   | <ul> <li>Replicates<br/>mitochondrial DNA</li> </ul>                          | +                  |
| <b>Pol δ</b><br>(delta)   | <ul> <li>Elongates Okazaki<br/>fragments of the<br/>lagging strand</li> </ul> | +                  |
| <b>Pol ε</b><br>(epsilon) | <ul> <li>Elongates the<br/>leading strand</li> </ul>                          | +                  |

Copyright © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins



Continue:



# The central dogma of Molecular Biology



A portion of DNA, called a **gene**, is transcribed into **RNA**.

**RNA** is translated into **proteins**.

# Transcription (mRNA synthesis)

- ► A portion of **DNA** (a **gene**) is transcribed into messenger RNA (**mRNA**).
- Only one of the DNA strands is transcribed (antisense strand).
- ► The **RNA polymerase II** is responsible for this process.
- The direction of transcription is  $5' \rightarrow 3'$ .

# Steps of mRNA synthesis

#### **Chain initiation:**

**RNA polymerase** II binds to *promoter region* of DNA to start transcription.

Notes : Ta-Ta box is in the promotor region



# Steps of mRNA synthesis

#### Chain elongation:

- ► A portion of DNA template unwinds (opens) at the point of RNA synthesis.
- ► This forms **a short length of RNA-DNA hybrid**.



#### Chain termination:

**DNA** contains specific sites which stop transcription (at a sequence of **4-10** AT base pairs).

**Note:** in RNA we call it transcription bubble instead of replication fork

### Post-transcriptional modification

Capping: Addition of a methylated guanine nucleotide at 5' end of mRNA

#### **Function:**

- To prevent mRNA degradation by exonucleases.
- It helps the transcript bind to the ribosome during protein synthesis.

**Polyadenylation:** Addition of a poly(A) tail (a highly conserved AAUAA sequence) at 3' end of mRNA.

#### **Functions:**

- To protect the mRNA from degradation
- For ribosomal RNA recognition Notes:

Tail: poly (A) tail helps with recognition

#### • Intron removal for releasing mature mRNA from nucleus

#### \* Note:

**Introns** will be removed before the transcription , but Exons present.

# Steps of mRNA synthesis

 RNA polymerase II binds to
 promoter region of DNA to start transcription.

Chain

initiation:

Chain

elongation:

Chain

termination

- a portion of DNA unwinds (opens) at the point of RNA synthesis.
- RNA polymerase II moves along the template strand of the DNA Synthesizing the complementary single stranded mRNA molecules <u>\*the direction of transcription is from</u> 5' 3'\*
- as the RNA polymerase II moves the double helix rewinds.
- this forms a short length of RNA-DNA hybrid.

DNA contains specific sites which stop • transcription (at a sequence of 4-10 AT base pairs).

Terminator Promoter Transcription unit **DNA of gene** Start point Terminati point **RNA** polymerase Initiation **Template strand** of DNA ran Unwound DNA Elongation Rewound DNA Termination transcript

× PowerPoint Presentation 🖹 🗙 Molecular biology ii

3lock/435%20Team%20work/Biochemistry/4-Molecular%20biol

# Post-transcriptional modification



# **Translation (Protein synthesis)**

It is a process of protein synthesis from mRNA

- mRNA has genetic codes for amino acids present in proteins.
- The genetic code is a dictionary that identifies the correspondence between a sequence of nucleotide bases and a sequence of amino acids.
- Each individual word in the code is composed of three nucleotide bases (codons).

second base in codo С G UGU Cvs

IAU '

u

u

С

G

u

Ĉ

G

u

с

G

UGC Cvs

UGA stop

CGU Arg

CGC Ard

CGA Arg

CGG Arg

AGU Ser

AGC Ser

AGA Arg

AGG Arg

GU GIV

IGC GIV

GA GIV

GG GI

U

UUU Phe











Elongation: it happens until the termination (stop codon) \* P =peptide side, A=incoming amino acids, E= Exit site

# Mentioned in males lecture:

- All prokaryotes have 70S ribosomes. 70S ribosome is made up of a large subunit (50S) and small subunit (30S)
- Eukaryotes have larger ribosomes (80S) made up of 60S and 40S subunits.
- S= Svedberg units to measure the size of the subunits

- In humans the start codon is **Methionine.**
- In bacteria the start codon might code with different codons.









From DNA to protein

**DNA Replication** 

Protein synthesis

<u>DNA</u>



#### Girls team members:

- 1- أسيل السليماني.
  - 2- نوره الشبيب.
  - 3- ريم السرجاني.
  - 4- غادة المزروع.
- 5- سارة الشمراني.
  - 6- نجود العنزي.
- 7- شهد السويدان.
- 8- هيفاء الوعيل.
- 9- منيرة الضفيّات.
- 10- لمى الفوزان.
- 11- بثينة الماجد.

-Contact us:

Biochemistryteam436@gmail.com

twitter.com/436biochemteam

#### -Team leaders:

نوره السهلي. عبدالله المانع.