

MICROBIOLOGY

Lecture : 1 BACTERIAL STRUCTURE AND GENETICS

IMPORTANT. DOCTORS NOTES. EXTRA INFORMATION.

Microbiology

team 436

Objectives-Bacterial Structure & function:

 Define the cellular organization of bacteria and know the differences between Eukaryotes and Prokaryotes.(S 3 +4)

• Know major structures of bacteria and its Function.(4-6)

• Know the structure of cell wall of bacteria including the differences between Gram positive and Gram negative bacteria and main Functions (S 6-8).

• Know the external structures of bacteria with and functions .(9 - 11)

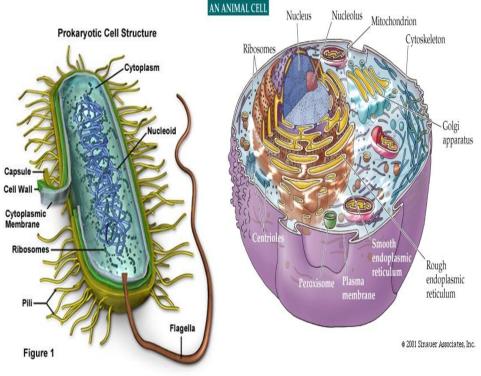
• Know the cytosol and internal structures of bacteria .(12 and 13)

 Describe bacterial spores and its application in the practice of medicine.(12)

Objectives- Bacterial Genetics:

• Know basic information about bacterial genetics and replication of bacteria .(14)

• Describe plasmids , its origin , types and its importance in clinical practice.(15 and 17)

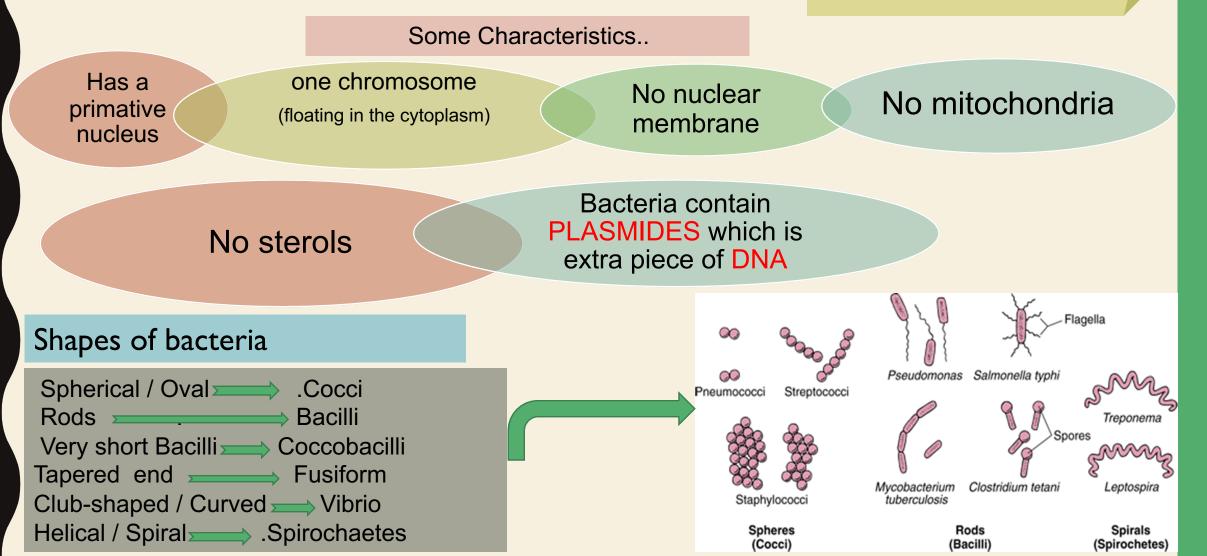

• Recalls genetics variations, including ; mutation and mechanisms of gene transfer and its implication on bacterial resistance to antimicrobial agents.(18 -25)

Differences between eukaryotes and prokaryotes

Characteristic	Prokaryotes	Eukaryotes	
Size of cell	Typically 0.2-2.0 m m in diameter	Typically 10-100 m m in diameter	
Nucleus	No nuclear membrane or nucleoli (nucleoid)	True nucleus, consisting of nuclear membrane & nucleoli	
Membrane-enclosed organelles	Absent	Present; examples include lysosomes, Golgi complex, endoplasmic reticulum, mitochondria & chloroplasts	
Flagella	Consist of two protein building blocks	Complex; consist of multiple microtubules	
Glycocalyx	Present as a capsule or slime layer	Present in some cells that lack a cell wall	
Cell wall	Usually present; chemically When present, chemically s complex (typical bacterial cell wall includes peptidoglycan)		
Plasma membrane	No carbohydrates and generally lacks sterols	Sterols and carbohydrates that serve as receptors present	
Cytoplasm	No cytosketeton or cytoplasmic streaming	Cytoskeleton; cytoplasmic streaming	
Ribosomes	Smaller size (70S)	Larger size (80S); smaller size (70S) in organelles	
Chromosome (DNA)	Single circular chromosome;	Multiple linear chromosomes	
arrangement	lacks histones	with histones	
Cell division	Binary fission	Mitosis	
Sexual reproduction	No meiosis; transfer of DNA fragments only (conjugation)	Involves Meiosis	

Prokaryotic vs Eukaryotic Cells

**Cell wall present in all prokaryotes and it consist of peptidoglycan


It present in some eukaryotes ,like , plants and it consist of cellulose in plants

لم يذكر الفرق في السلايدات الأساسية ولكن مذكورة في الأهداف*

Definition:

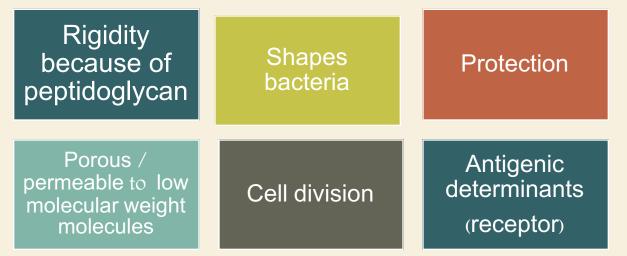
Bacteria : Is a heterogenous group of unicellular organisms , about 1 -8 µm in diameter.All bacteria is a prokaryote.

hetrogenous : two or more things are unlike in substance or nature, as in a *heterogenous* mixture containing two substances that do not totally combine. (from a dictionary)

لزيادة الفهم

اللولبي

في الكوكيز Oocci -Coccopacilli Bacilli 3 Vibro G مثل بطاطس تشيتوس Fus form Spirochaete S



Arrangement of bacteria:

Cell wall of bacteria:

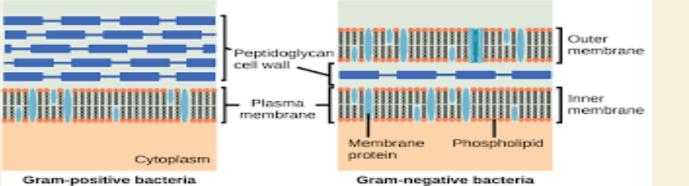
Bacteria are cells with rigid cell wall surround cytoplasmic membrane and internal structures. Functions of cell wall:

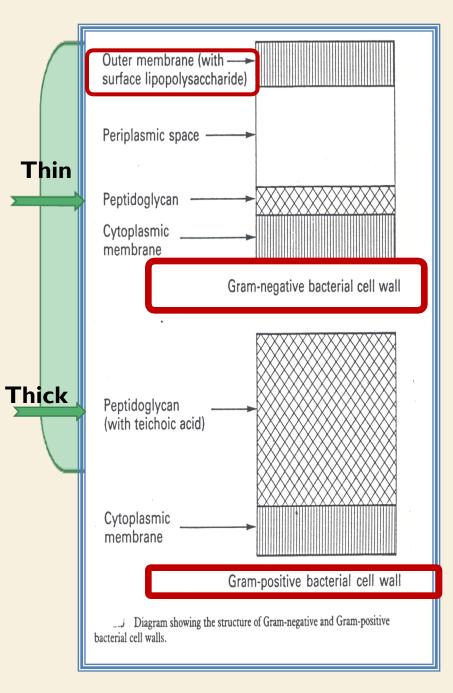
**There is a difference between "cell wall" and "cytoplasmic membrane" !! Cytoplasmic membrane in pro –eukaryotes , while cell wall in prokaryotes and plants and some kind of animals ©

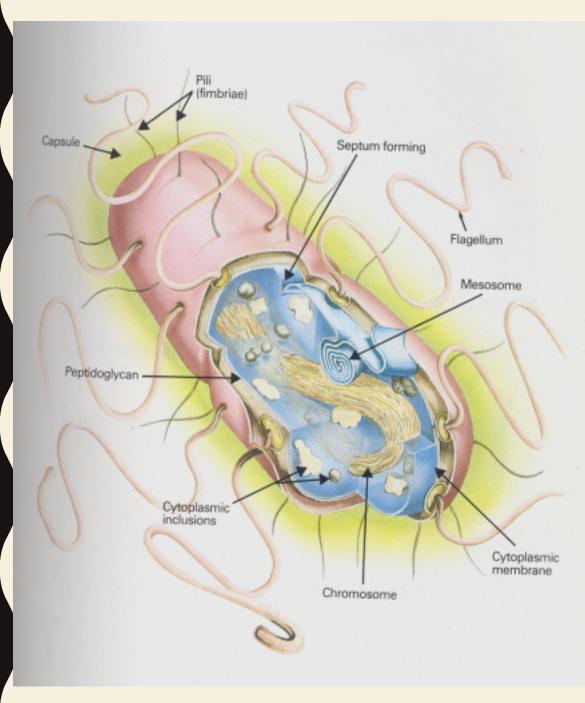
*Note : *Mycoplasma* is a bacteria that is naturally have no cell wall.

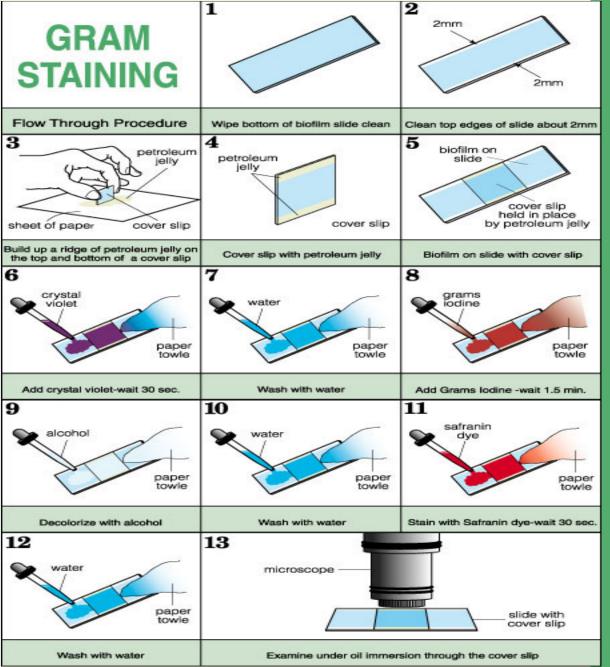
<u>Chemical structure of bacterial cell</u> <u>wall</u>:

Peptidoglycan :


Rigid part, mucopeptide composed of alternating strands of *N*- acetyl muramic acid and *N*- acetyle glucosamine linked with peptide sub units.


Two groups of bacteria depending on reaction to GRAM STAIN:


- 1. GRAM POSITIVE BACTERIA: stain blue/purple by Gram stain
- 2. Peptidoglycan **thicker** than Gram negative bacteria.
- 3. Closely associated with cytoplasmic membrane
- 4. Teichoic acid : anchors cell wall to cell membrane , epithelial cell adhesion.


5. Antigens : *polysaccharides(Lancefield) *protein(Griffith)

- 1. GRAM NEGATIVE BACTERIA: stain red by Gram stain
- 2. Thin Peptidoglycan
- 3. outer membrane(only in negative) contains: specific proteins (porins) important in the transport of hydrophilic molecules lipopolysaccharide & lipid (ENDOTOXIN)

External Structures of Bacteria

External protrude from the cell into the environment.:

<u>1-Pili:</u>

- Fine short filaments extruding from cytoplasmic membrane.
- Found on the surface of many Gram negative & Gram positive bacteria.
- Composed of protein <u>Pilin</u>.
 Two classes:

1- **Common pili** (*fimbriae*): covers the surface, responsible for: adhesion & colonization (الالتصاق والاستعمار)

2- Sex pili : in some bacteria only, responsible for conjugation((تشارك فيها الجينات))

2-Capsule:

- Amorphous material surrounds bacteria.
- Usually polysaccharide
- Occasionally protein

Function : 1-Inhibits phagocytosis. 2- Acts as *Virulence factor* in some

bacteria by assessing attachment to the surfaces.

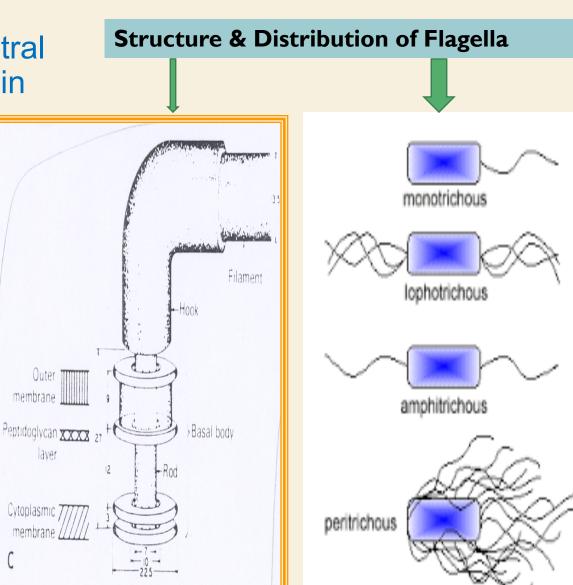
تختلف كثافة الكابسول من خلية إلى * أخرى

3-Flagella

- Composed of protein FLAGELLIN.
- Helical filaments
- Found in Gram positive & Gram negative bacteria

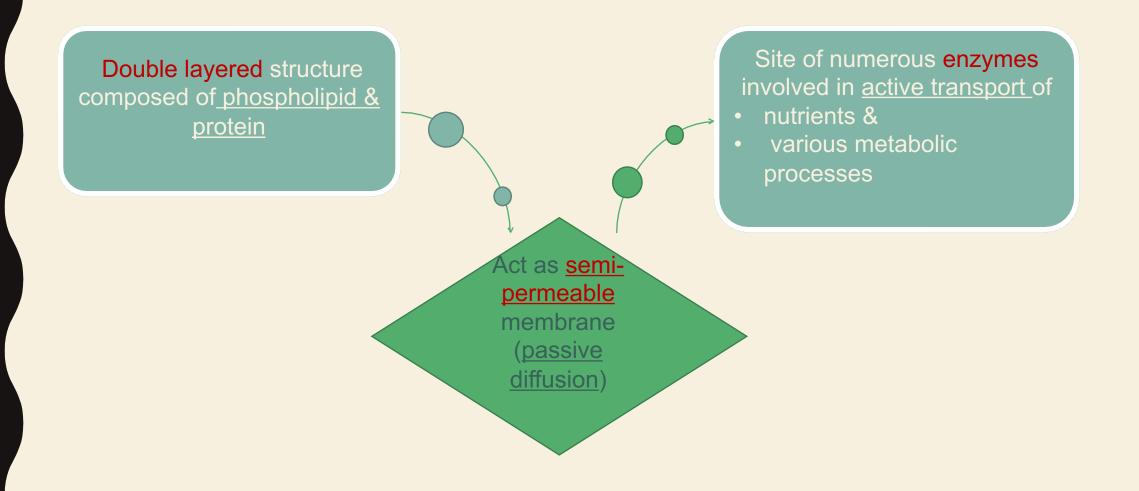
Distribution:

- Peritrichous (حول كل البكتيريا)
- Monotrichous (في طرف واحد)
- Lophotrichous (من طرفين)


Structure of Flagella:

Basal Body:

- a protein arranged as rings on central rod (4 ring in Gram negative, 2 ring in Gram positive).
- outer pair of rings: only in Gram negative, pushed through outer membrane.
- inner pair of rings : inserted into peptidoglycan & cytoplasmic membrane.


Hook : bent structure -act as joint Long Filament :Flagellin protein Function of Flagella : motility & chemotaxis (الاحساس بالخطر والاستشعار كيميائيا)

Chemotaxis :is the movement of an organism in response to a chemical stimulus.

CYTOPLASMIC MEMBRANE

Cytoplasmic membrane (cell membrane):

INTERNAL STRUCTURES OF BACTERIA

HOW? By storing Genetic material

Mesosomes

convoluted invaginations of cytoplasmic membrane

Function:

- Involved in DNA segregation during <u>cell</u> <u>division & respiratory</u> <u>activity</u>
- Contain receptors involved in chemotaxis
- <u>Permeability</u> barrier (active transport of solutes).

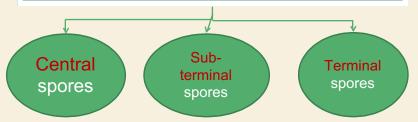
Core of Bacteria

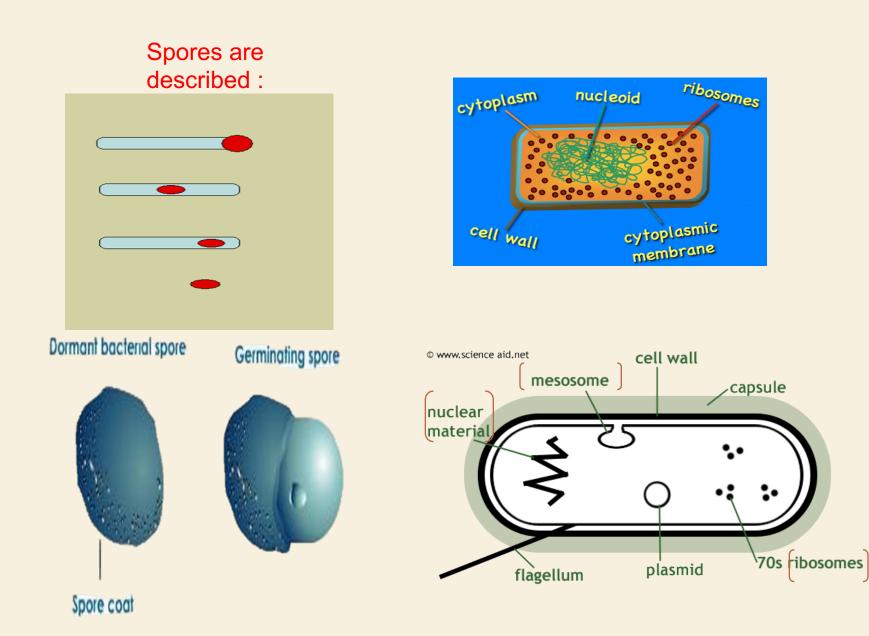
Cytoplasmic inclusions: Nutritional storage granules examples:

- Volutin
- Lipid
- Starch / or Glycogen

Nucleoid (Nuclear Body):

- Circular single stranded chromosome (bacteria genome or DNA)
- No nuclear membrane
- DNA undergoes semi conservative replication , bidirectional from a fixed point


Ribosomes of Bacteria:


- Distributed throughout the cytoplasm
- Site of protein synthesis
- Composed of <u>RNA</u> and <u>protein</u>

Spores of Bacteria

- Small ,dense, metabolically inactive , non- reproductive structures produced by Bacillus & Clostridium
- Enables the bacteria to survive adverse environmental conditions.
- Contain high concentration of <u>Calcium</u> dipicolonate.
- Resistant to heat, dissection & disinfectants
- Often remain associated with the cell wall
- Spores germinate when growth conditions become favorable to produce vegetative cells.
- Application in medical practice :spore preparations used for checking the efficacy of <u>Autoclaves</u>, eg. Bacillus subtilis & Bacillus sterothermophilus .

Spores are described as :

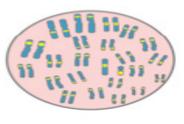
Endospore Formation

Bacterial Genetics

Definitions:

Genetics

- Genetics is the study of inheritance and variation.
- Genetic information encoded in DNA.

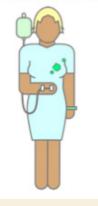

Function of genetic material:

- 1- Replication of the genome
- 2- Expression of DNA to mRNA then to protein. Either functional(for metabolism)
- Or structural ((الدعامة للخلية))
- يعني البروتين المنتج يستهلك حيويًا وللتدعيم كلام الدكتور *

Genotype:

Is the complete set of genetic determinants of an organism.

A genotype is the genetic makeup of a person


Phenotype:

Is expression of

specific genetic

Material.

A phenotype is the physical manifestation of an inherited trait or disease

Wild type:

Is reference (parent) strainactive.

Mutant: progeny with mutation.

أي كلام باللون الأخضر هو كلام الدكاترة دائماً متغيرة فبسبب هذا التغير يطلع منها طفرات

DNA types in the bacteria

Chromosomal

 Haploid, circular molecule of double stranded- DNA attached to cell membrane.

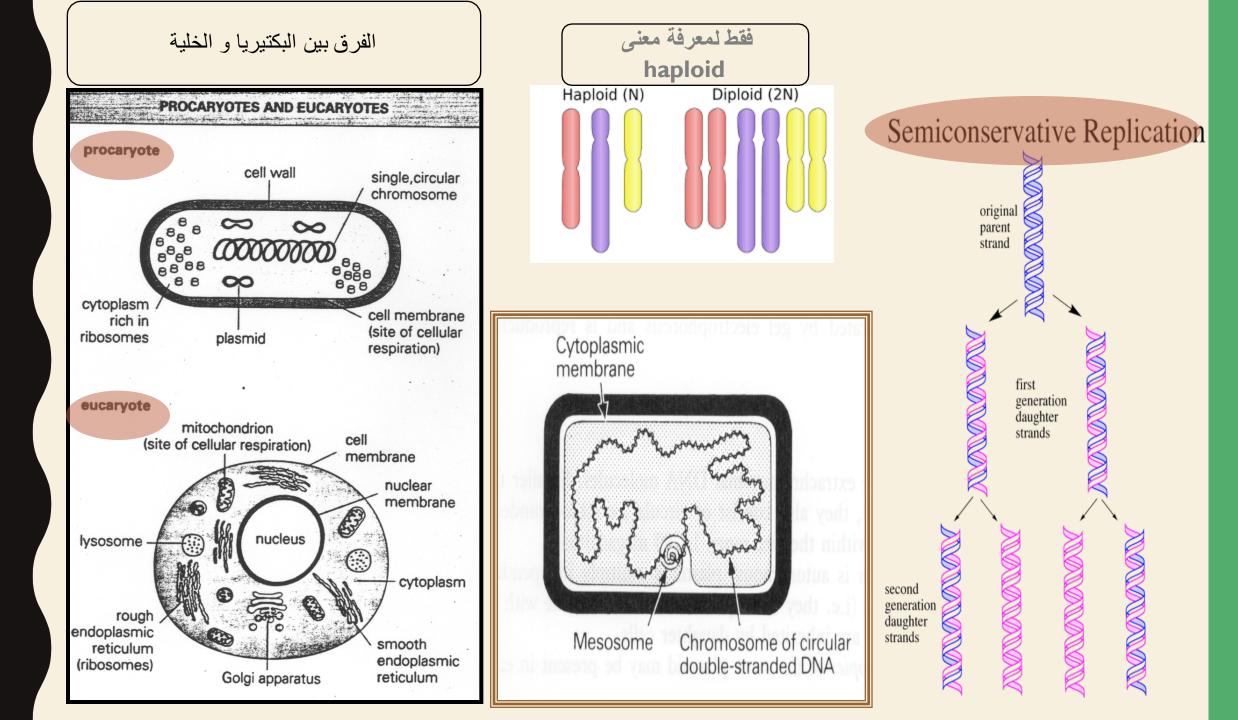
No nuclear membrane (prokaryotes).

DNA a double helical structure, genetic code in Purine and Pyrimidine bases of nucleotides that makes DNA strand.
(like human A T G C)

• 3 bases comprise one code, each triplet codon codes for one amino acid.

Replication is semi-conservative.

Types of plasmid: In the next slide


Extra-chromosomal (Plasmid).

• Extra chromosomal DNA composed of double stranded-DNA. (in the cytoplasm)

- Found in most species of bacteria.
- Origin? (un known)
- Govern their own replication.

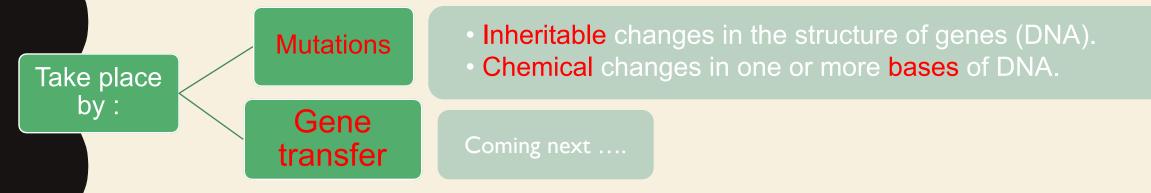
Application :Genetic exchange, amplify genes. (مثل الهندسة الوراثية)

- Transfer by conjugation
- Unrelated plasmids coexist together only. (في الخلية الوحدة ممكن يكون فيها أكثر من نوع)

Types of plasmids :

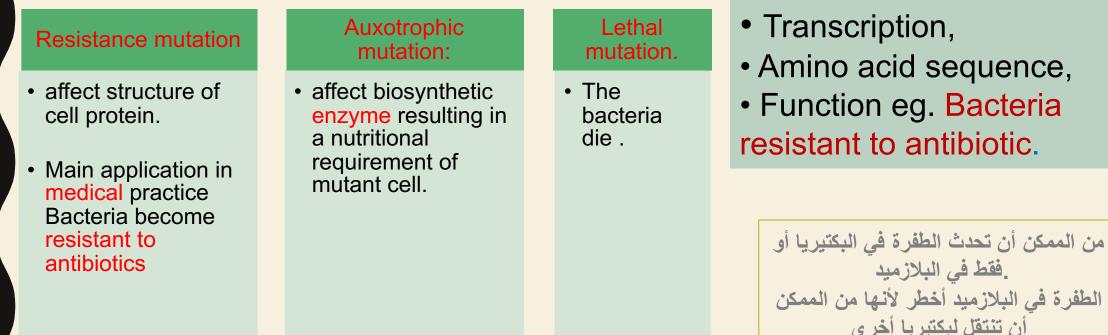
F-plasmids **R**-plasmids Col-plasmids Plasmid maintenance genes Transfer promotion Self transmissible plasmid genes : genes code for :(fertility) factor, : in typical of coliform bacilli antibiotic transfer of Enterobacteria, Antibiotic resistance or resistance codes for chromosome virulence determinants particularly during mating. extracellular Gram negative Maintenance toxins. region bacteria. Transducible plasmid (non-self transmissible) bacterium typical of staphylococci

R from the word (Resistance).


bacterium plasmid bacterial chromosome

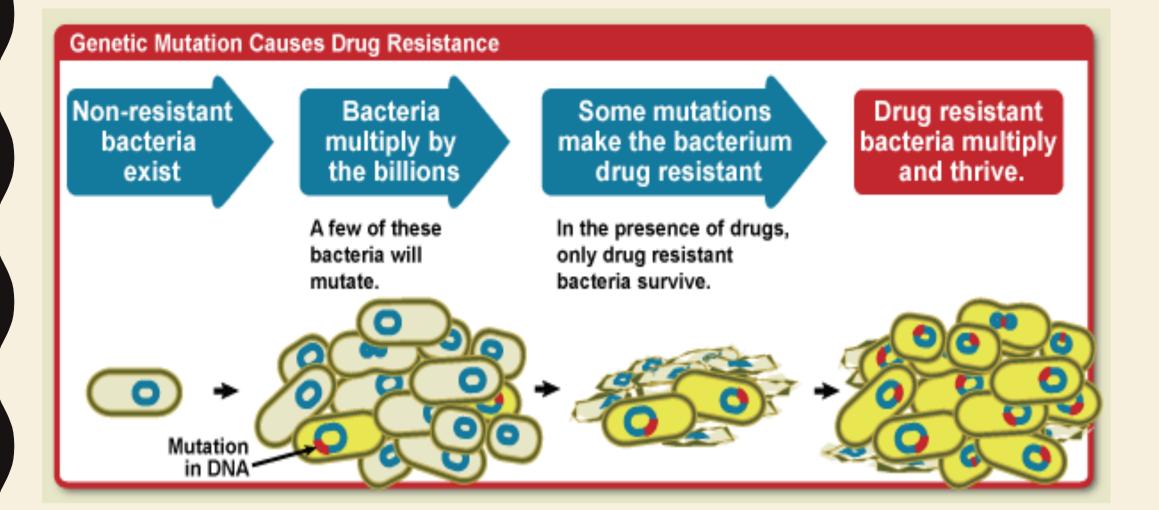
1 0 m

Resistance


determinants

Genetic variation in bacteria :

Classification of Mutation:


Depends on biological sequencing:

Mutation /gene defect

leads to alteration in:

Mutation Causes Antimicrobial Resistance

Gene Transfer Among Bacteria

Transformation

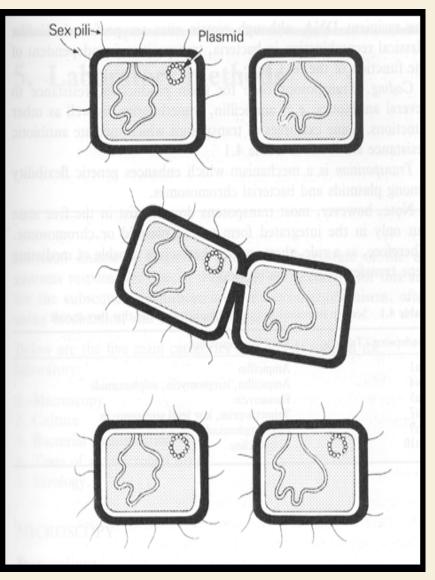
Transduction

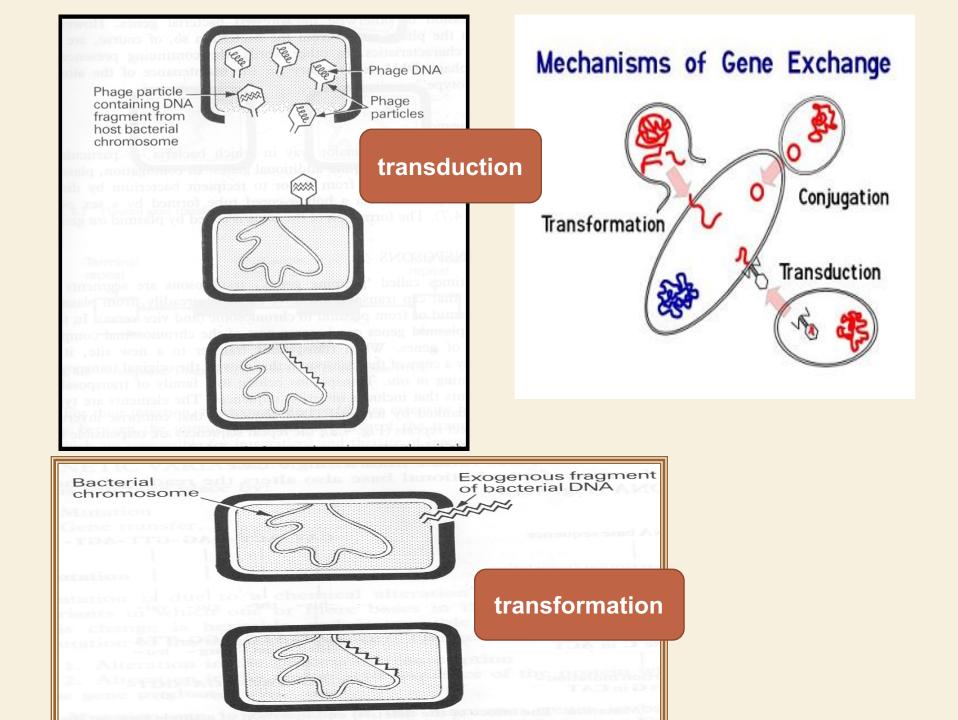
Conjugation

A fragment of exogenous naked bacterial DNA are taken up and absorbed into recipient cells.

Common in Haemophilus influenzae & Streptococcus pneumoniae. Bacteria become resistant to Ampicillin.

Phage mediated transfer of genetic information from donor to recipient cells. Example Beta – Lactamase production in **Staphylococcus** aureus : Bacteria becomes resistant to penicillin. **Toxin production** Corynebacterium *diphtheriae*


Major way bacteria acquire additional genes. **Plasmid** mediated Cell contact required and genes reside on plasmid resident within donor cells transfer to recipient cell mating). **Conjugation is the** common way of transfer of genes resistance to antibiotics among bacteria in hospitals.


CONT....

conjugation

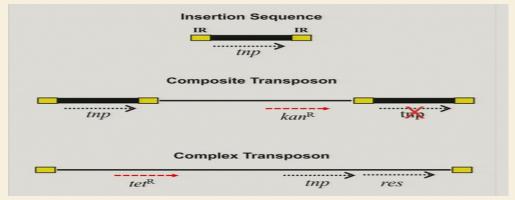
Mediated by plasmid called **F factor** (fertility).

Gene encode changes in surface by producing a **sex pilus** this facilitates capture of F⁻ cells and the formation of a conjugation bridge through which DNA passes from F ⁺ into F⁻ cells.

GENE TRANSFER AMONG BACTERIA

Mechanisms:	Transformation	Transduction	Conjugation
	A fragment of exogenous naked bacterial DNA are taken up and absorbed into recipient cells.	Phage mediated transfer of genetic information from donor to recipient cells	 Major way bacteria acquire additional genes. Plasmid mediated Cell contact required and genes reside on plasmid resident within donor cells transfer to recipient cell (mating).
Example:	 Common in Haemophilus influenzae & Streptococcus pneumoniae. Bacteria become resistant to Ampicillin. 	 Beta – Lactamase production in <i>Staphylococcus</i> <i>aureus :</i> Bacteria becomes resistant to penicillin. Toxin production in <i>Corynebacterium</i> <i>diphtheriae.</i> 	Conjugation is the common way of transfer of genes resistance to antibiotics among bacteria in hospitals.

GENETIC RECOMBINATION


After gene transfer, there are three possible fates:

- 1-Exogenous DNA degraded by nuclease.
- 2-Stabilized by circulization and become plasmid.
- 3- Form a partially hybrid chromosome with segment derived from each source.

TRANSPOSABLE ELEMENTS

- Genetic units capable of mediating own transfer from chromosome to another, from location to other on same chromosome or between plasmid and chromosome or phage DNA.
- <u>Types</u>: 1- Transposons .
 - 2-Insertion sequence

https://www.onlineexa mbuilder.com/bacteria I-structure-functionbacterialgenetics/exam-35905

THE TEAM :

- Waleed Aljamal
- Ibrahim Fetyanu
- Meshal Alhusainan
- Hussam Alkhathlan
- Faisal Alqumaizi

Contact us :

436microbiologyteam@gmail.com

Twitter :

@microbio436

THE TEAM :

- Shrooq Alsomali
- Hanin Bashaikh
- Jawaher Alkhayyal
- Reem Alshathri
- Rawan Alqahtani
- Ohoud Abdullah
- Ghadah Almazrou
- Lama Al-musallm