

MICROBIOLOGY

Lecture : 2

VIRAL STRUCTURE CLASSIFICATION

IMPORTANT. DOCTORS NOTES. EXTRA INFORMATION.

Objectives-viral structure and classification:

- General characteristics of viruses
- Structure and symmetry of viruses
- Classification of viruses
- Steps of viruses replication
- Laboratory diagnosis of viral infections.

SHORTCUTYOU MIGHT NEED..

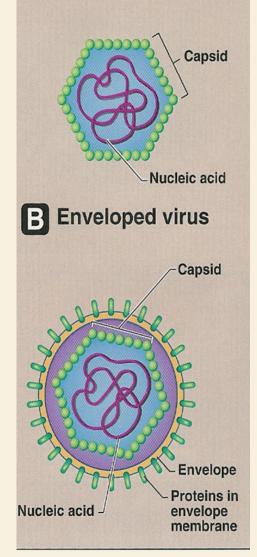
- •Vs:Virus
- •NA: Nucleic Acid
- •INFs: Interferons
- •CPE: Cytopathic effect
- •HSV: Herpes Simplex Virus
- •EBV: Epstein-Barr Virus
- •HPV: Human Pappilomavirus
- •HTLV: Human T-lymphotropic
- •Virus
- •IP: Incubation Period
- AB: Anti Body
- APC: Antigen Presenting Cells NK: Natural Killer
- VICs: Virus Infected Cells
- IL: Interleukin
- CMI:Cell-MediatedImmunity IR: Insulin Resistance
- CTCs: Cytotoxic T Cells
- IF: Immunofluorescence
- HAV: Hepatitis A Virus

PROPERTIES OF MICROORGANISMS

Characteristics	Parasites	Fungi	Bacteria	Viruses
Cell	Yes	Yes	Yes	NO
Type of Nucleus	Eukaryotic	Eukaryotic	Prokaryotic	-
Nucleic Acid	DNA <u>and</u> RNA	DNA <u>and</u> RNA	DNA <u>and</u> RNA	DNA <u>or</u> RNA
Ribosomes	Present	Present	Present	Absent
Mitochondria	Present	Present	absent	Absent
Replication	Mitosis	Budding or Mitosis	Binary Fission	Special 1V= million

CHARACTERISTICS OF VIRUSES

A Nonenveloped virus


- ◆ I Acellular organisms
- ♦ 2- Tiny particles
 - internal core (DNA/RNA)
 - protein coat (capsid)
 - <u>some</u> viruses have lipoprotein membrane (envelope)
- 3- Obligate intracellular organisms
- 4- Replicate in a manner different from cells (e.g. one virus replicate to

Seen only by EM

Produce many viruses)

Taken from Host. **Not** all viruses

have envelope

note : viruses range in size from 20-300nm

{Extra info; way smaller then bacteria 2000-8000nm}

VIRAL STRUCTURE <

I- Genome
2- Capsid
3- Envelope

I-Viral Genome

Could be RNA or DNA DNA: deoxyribonucleic acid All DNA viruses are double stranded <u>except</u> for Parvoviruses. Single molecule.

<u>OR</u>

RNA: ribonucleic acid All RNA viruses are single stranded <u>except</u> Reoviruses. Single/double. Could have positive or negative polarity.

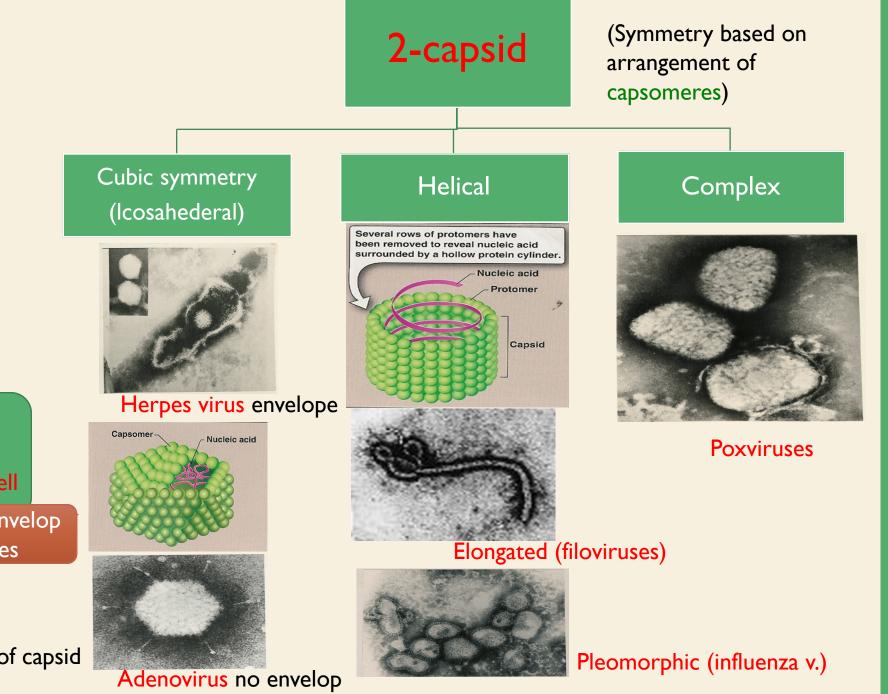
+VE POLARITY RNA = Direct protein

synthese (has mRNA _____ Ribosome at cytoplasim)

-VE POLARITY = indiect synthese (go to

host nucleus for protein synthesis)

Note: all viruses are haploid except retroviruses are diploid. Example, HIV


It's a protein shell enclosing the viral genome. Capsids are build of a large Number of subunits called Capsomers

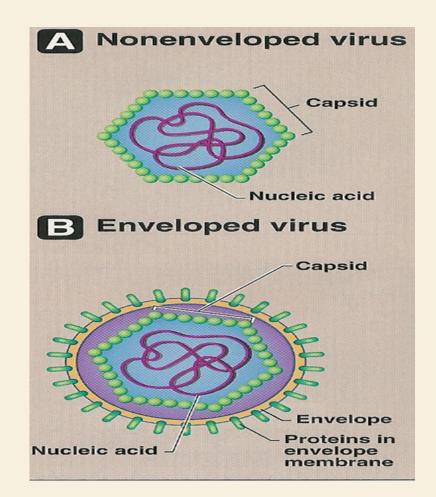
Genome (NA)+capsid= nucleocapsid

Function; I-Protect Nucleic Acid 2-Facilitates its entry into cell

> In Non-envelop viruses

NA= nucleic acid Capsomeres = subunits of capsid

3-Viral structure


* It is *Lipoprotein membrane* (host lipid + virus specific protein)

It also contain protein and glycoprotein

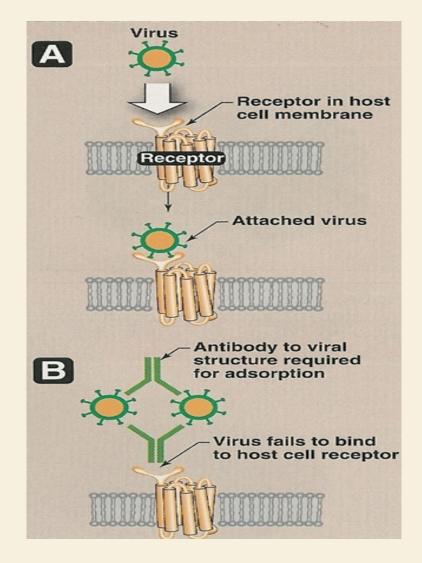
-During viral budding : Envelope is derived from cell membrane except herpesviruses from nuclear mb

 -Enveloped Viruses are more sensitive to heat, dry & other factors than nonenveloped Viruses

-Glycoprotein attaches to host cell receptor

Viral proteins

The outer viral proteins:


-Mediate attachment to specific Receptors -Induce neutralizing antibodies -Target of antibodies

The internal viral proteins:.

-Structural (capsid proteins of enveloped viruses) -Nonstructural proteins(enzymes):

*All ssRNA viruses (-) polarity have transcriptase (RNA dependent RNA polymerase) inside virions.

*Except RetroViruses & HBV contain reverse transcriptase.

Classification of viruses

Type of Nucleic Acid (DNA or RNA)

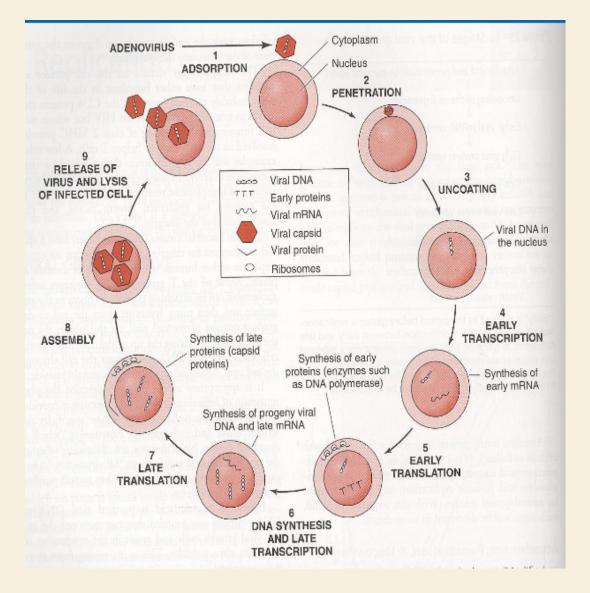
The number of strand: Double VS. singlestranded

■ The **polarity** of viral genome: Positive (+) or negative (-) stranded RNA

■ The presence or absence of **envelope**

Type of symmetry

Medically Important Viruses


I- DNA						
Single Stranded	Double Stranded					
Non- Enveloped	Enveloped		Non- Enveloped			
Icosahedral	<u>Complex</u>	<u>lcosahedral</u>	<u>lcosahedral</u>			
Parvoviridae	Poxviridae	Herpesviridae	Adenoviridae			
2- RNA						
	Single Stranded		Double Stranded			
Neg-Strand	Pos-Strand		Non-Enveloped			
Enveloped	Enveloped	Non-Enveloped	Icosahedral			
<u>Helical</u>	<u>Helical</u>	Icosahedral	Reoviridae			
Filoviridae	Coronaviridae	Hepeviridae				
	Icosahedral					
	Retroviridae		N			
			B			
			10			

Replication

- Adsorption
- Penetration
- Uncoating
- Synthesis of viral

components

- a) mRNA
- b) Viral Proteins
- c) Nucleic Acid (NA الختصار ها)
- Assembly
- Release

I-Adsorption

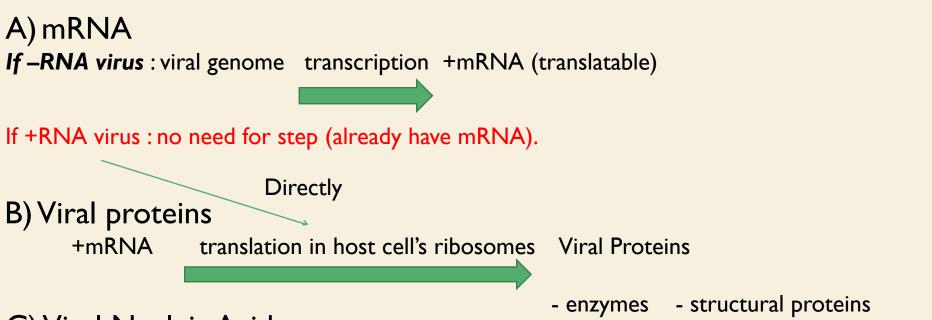
- Glycoprotein (if enveloped virus)
- Folding proteins in capsid (if non-enveloped virus)

2- Penetration

- Fusion التحام: of host cell membrane and viral envelope (if enveloped virus)
- Endocytosis: Virus is swallowed by the cell and becomes in an <u>Endocytotic Vesicle</u> (both) note: the virus tricks to the cell into thinking it is not harmful, so the cell swallows it (endocytosis)

Q- How does the virus get out of endocytotic vesicle?

- A- Enveloped: Fuse with endocytotic vesicle membrane.
 - Non enveloped: Lyse تحلل the endocytotic vesicle membrane.


<u>3- Uncoating</u>

Release of genome in :

- Cytoplasm of host cell الخلية المتعرضة للهجوم (Direct synthesis of proteins = +ve RNA polarity)
- Nucleus of host cell (Indirect synthesis of proteins = -ve RNA polarity)

4- Synthesis of viral components

To make the viral proteins it needs +mRNA (translatable قابل للترجمة) https://www.youtube.com/watch?v=ZGE4BLuAkuU&feature=youtu.be

C) Viral Nucleic Acid

- The virus will replicate and synthesize it's nucleic acids using the host cell's resources مواردها
- One virus can produce millions of viruses by continuation of this process (synthesis of viral proteins)

REPLICATION

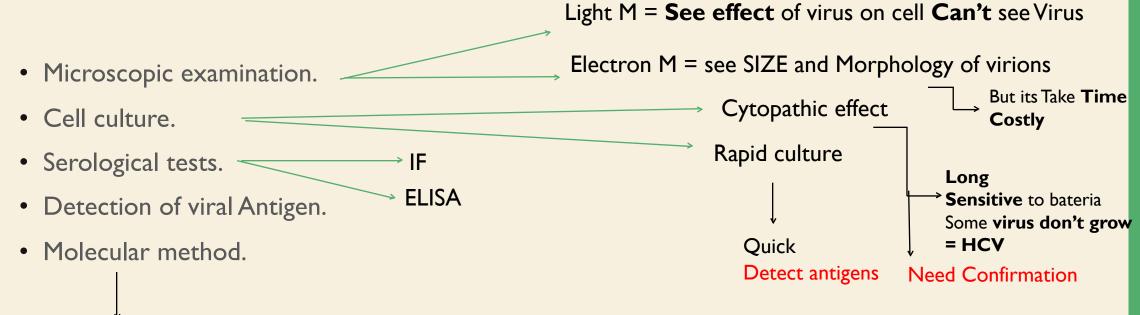
- Assembly:
- The viral Proteins + Nucleic acid (DNA or RNA) assemble together = virion*.
- Then the virion is released.

*What is a virion? A virion is a complete virus particles, consisting of RNA or DNA surrounded by a protein shell.

Basically it is the infective form of a virus.

RELEASE

- It's the last step of the replication cycle of the viruses.
- Enveloped viruses:


The **Virion leaves** the Cell and **creates its Envelope** by **budding** through the host's cell membrane.

Except Herpes V = budding host's nuclear membrane

• Non-Enveloped viruses:

Cell lyses or rupture

LABORATORY DIAGNOSIS OF VIRAL INFECTIONS:

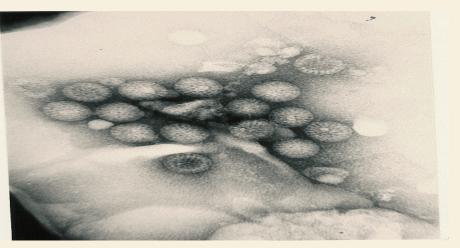
Used for Diagnosis Only way to measure viral load كمية الفيروسات No Confirmation needed

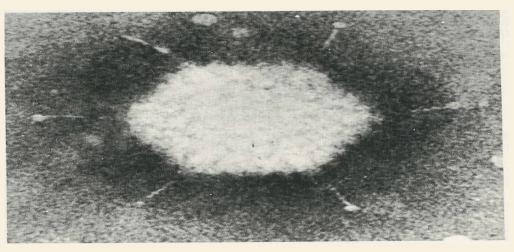
MICROSCOPIC EXAMINATION:

• Light microscopy:

 Histological appearance "to see what the virus has done to the cell, without seeing the virus itself"

Ex. "Inclusion bodies"


• Electron microscopy:


- Morphology & size of virions ." to see the virus particle itself"
- Ex. Diagnosis of viral gastroenteritis such as Rota, adenoviruses. Diagnosis of skin lesion caused by herpes, or poxviruses.
- It is replaced by Antigen detection & molecular tests

ELECTRON MICROGRAPHS:

Rotavirus

Adenovirus

Herpes virus

VIRUS CULTIVATION

- Laboratory animals
- Embryonated eggs
- Cell culture

CELL CULTURE

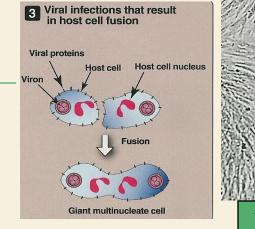
هو تأثير الفيروس على الخلايا خارج بيئتها لتشخيص العدوى الفيروسية

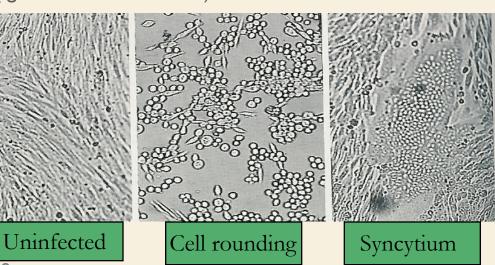
- Cell culture refers to the removal of cells to see their subsequent growth under suitable environment.
- After isolating the cells from the tissue, it has 3 types of sub passages:

Cell culture	NO of sub passages	What kind of viruses their are	picture
Primary cell culture	I or 2(it lasts for very short period)	Usually RNA	
Diploid cell culture (semi – continuous)	20-50(it lasts for few weeks) Usually DNA		
Continuous cell line	Indefinite		

<u>Note</u> : there are Variation of Sensitivity of cell cultures to infection by viruses العالي اللي يحدد كونها Primary or diploid or continues

DETECTION OF VIRAL GROWTH

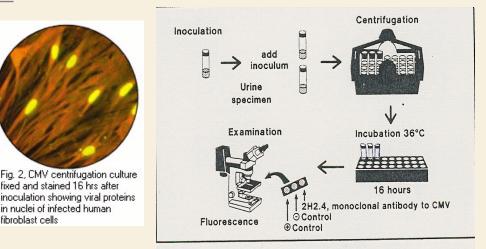

• كيف يمدينا نكتشف النمو الفيروسي ووش العلامات اللي تبان على الخلية من خلال العبوّة اللي استخدمناها في cell culture


• I- By the cytopathic effects

The affected cell will have "Rounding, shrinkage, aggregation, Syncytium(giant multinucleate cell) and lose of adherence.

- by IF (Immunofluorescence)
- Other

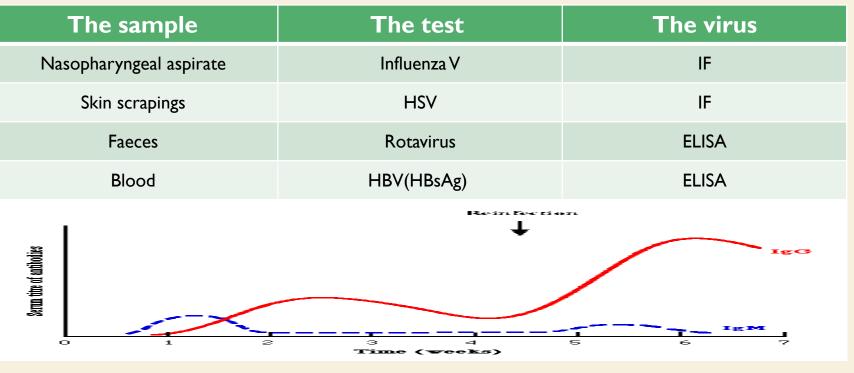
Problems with cell culture:



- -Long incubation (up to 5 days) can be solved with rapid culture technique
- -Sensitivity is variable
- -Susceptible to bacterial contamination (عرضه للتلوث البكتيري) -Some viruses do not grow in cell culture e.g. HCV

<u>Rapid culture technique :</u>

• Shell vial assay


It detect viral antigens within 1-3 days

SEROLOGICAL TEST ANTIGEN DETECTION

- It is a test that looks for a (anti bodies) from a sample to determine the availability of (antigen)
- There are three techniques :
- -complement fixation test (CFT)
- -Immunofluorescence (IF)
- -enzyme-linked immunosorbent assay (ELISA)

ملاحظة : الطرق أحيانا تكون مباشرة وغير مباشرة ، اذا كانت غير مباشرة فهي عن طريق الأنتي بديز واذا مباشرة على طول تكون عن طريق الانتي جين

Serological **tests**

Antibody detection

- Some techniques :
- -Complement fixation test (CFT)
- -Immunofluorescence (IF)

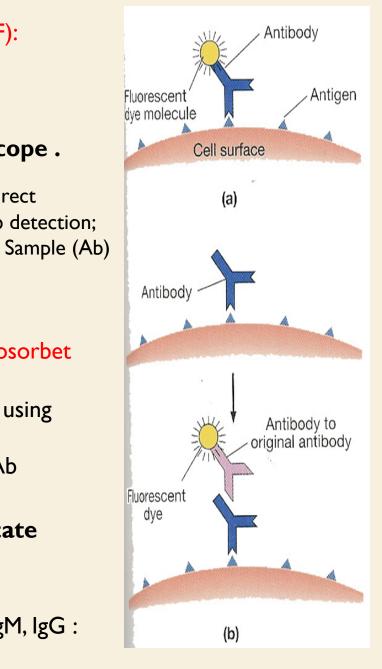
-Enzyme- linked immunosorbent assay (ELISA)

Molecular Tests :

Polymerase chain reaction (PCR) -NA amplification technique. -Viral genome Uses; -Diagnosis -Only way to measure

viral load and monitor response to treatment

Immunofluorescence (IF):


using a fluorescent dye And can be viewed by fluorescence microscope.

- Direct - Indirect Ag detection; Ab detection; Sample (Ag) Sample (Ab

Enzyme-linked immunosorbet assay (ELISA) Sample is then viewed using spectrometer. -Indirect ELISA for Ab detection ;

coloured wells indicate reactivity

-Direct ELISA for Ag detection or specific IgM, IgG :

• Which of the following has DNA or RNA ?

- Parasite
- Fungi
- Bacteria
- virus

• Which of the following replicate by budding or mitosis?

- Parasite
- Fungi
- Bacteria
- virus

• What is the range of size of a virus?

- 200-300 nm
- 20-300 nm
- 2-300 nm
- 20-23 nm

• All viruses are except retroviruses are

- Deploid ,haploid
- Haploid, deploid

• Which of the following is helical symmtry

- Proxvirus
- Filoviruses
- Adenivrus
- Herpes virus

• All of the following can be used to classify viruses except:

- Type of symmetry
- Number of strands
- The average count of ribosomes
- The polarity

THE TEAM :

- Waleed Aljamal
- Ibrahim Fetyanu
- Meshal Alhusainan
- Hussam Alkhathlan
- Faisal Alqumaizi

Contact us :

436microbiologyteam@gmail.com

Twitter :

@microbio436

THE TEAM :

- Shrooq Alsomali
- Hanin Bashaikh
- Jawaher Alkhayyal
- Reem Alshathri
- Rawan Alqahtani
- Ohoud Abdullah
- Ghadah Almazrou
- Lama Al-musallm