

7- Receptors families

Objectives:

- Classify receptors into their main super families
- Recognize their different transduc5on mechanism
- Iden5fy the nature & 5me frame of their response

Success is falling nine times and getting up ten

Receptors:

1. Recognition

2. Reception 3. Transduction 4. Response

Receptor structure:

- 1- Ligand recognition site
- 2- Inner catalytic domain

Type I: Ion channel-Linked receptor – (Ligand gated ion channel) – (Ionotropic receptor)

- Located at cell membrane (as it is on the cell membrane, it does not require to be lipid soluble)
- Directly activated by ligand binding
- Directly related to ion channels. (when the drug starts produce its effect, the effect will directly change the ion channel 'open or close the channel)
- Involved in very fast synaptic transmission.
- Response occurs in milliseconds
- e.g. nicotinic acetycholine receptor that is activated by occupancy of a ligand as acetycholine.

Type II: G-Protein coupled receptors - Metabotropic Receptor

• What is it ?

It is a receptor (Located at cell membrane) Cause changes in intracellular effector (especially in metabolic reaction) <u>via G</u> protein.

• Other name ?

it's also called Metabotropic Receptor :while tropic = changes in ions لأنها تُحدث تغير ات في الأيونات و هذه التغير ات تسبب تغير في الأيض :سبب التسمية ^

- The largest family that accounts for many known drug targets
- Located at cell membrane
- Coupled to intracellular effectors via G-protein
- Response through ion channels or enzymes. (the effect is not direct, first the drug binds with the receptor, then G protein take the drug then go to the ion channel or enzyme, 'the drug will not effect the ion channel or the enzyme')
- Involved in rapid transduction
- Response occurs in seconds. (it is not in milliseconds so that it is not very rapid)
- E.g. Muscarinic receptors of Ach
- E.g. Adrenergic receptors of Noradrenaline (alpha and beta receptors)

-Its effector could be enzyme or ion channel :

<u>G protein</u>: it is a Regulatory protein found in the cell membrane , Comprise of three subunits ($\alpha\beta\gamma$) (where α subunits possess (يمتلك) GTPase activity) , It is an intermediary (وسيط) between the receptor and the effector.

The story is:

- 1) the ligand bind to the receptor
- 2) the receptor undergo conformational change
- 3) G-protein bind to the receptor

+ α subunit become active(has GTP molecule) & dissociates

```
(تنفصل from βγ
```


defore step.1 α subunit was inactive(has GDP molecule)

- 1) then α subunit is free to activate an effector , by hydrolyzed the bound GTP to GDP
- 2) hydrolyzation of GTP to GDP also allow α -subunit to recombine with ($\beta\gamma$) and returns to its inactive state.

Cyclic AMP system (cAMP):

these substances will increase the calcium level in the cell * The endothelium reticulum storage the calcium, and the IP3 will affect on the endothelium reticulum and

The G-protein will affect on the Phospholipase C and produce 2 substances: IP3 AND DAG, and both of

make it release the calcium, that will increase the Ca level inside the cell

** stick with this rule: whenever there is increasing in the Ca level inside the cell, there will be contraction

Classes of G protein

According to their α subunits they are divided into

→ G_s = stimulates AC

➡ G_i = inhibits AC

G_q = activates PLC

G protein coupled receptors

- Most abundant type.
- Receptors are selective to <u>α subunit</u> and <u>effector</u> with which they couple.

Type III (Enzyme-Linked receptors) – (Tyrosine Kinaselinked receptor):

- Located at cell membrane
- Linked to enzyme (with intrinsic enzymatic activity)
- Response occurs in minutes to hours.
- Involved in response to hormones, growth factors.
- They control many cellular functions as metabolism and growth.

Activation of Type III receptors results in :

Activation of kinases as **tyrosine kinase** with **phosphorylation of tyrosine residue** on their substrates and activation of many intracellular signaling pathways in the cell*

E.g. Insulin receptors

* Kinase enzyme make phosphorylation (adding phosphate) to the tyrosine. Tyrosine located in the intracellular protein, like enzyme

Example: Insulin receptors

Type IV: Gene transcrip5on receptors – (Nuclear receptors):

- Located intracellularly (so that the drug has to be lipid soluble)
- Directly related to DNA (Gene transcription).
- Activation of receptors either increase or decrease protein synthesis
- Response occurs in hours or days and persists longer.
- Their natural ligands are lipophylic hormones; steroids, thyroids, estrogen.

They possess an area that recognizes specific DNA sequence in the nucleus which can bind it. This sequence is called a Responsive Element [RE]. (the place where the drug will bind is the DNA, especially in some sequence of the DNA which we called it Responsive Element)

This means that the activated receptors are acting as TRANSCRIPTION FACTORS [TF] \rightarrow

expressing or repressing target genes.

Summary:

	Туре І	Type II	Type III	Type VI
Location	Membrane	Membrane	Membrane	Nucleus
Coupling	Direct	G-Protein	Direct	Via DNA
Synaptic transmission	Very Fast	fast	slow	Very slow
Response	milliseconds	Seconds	minutes	Hours or days
Examples	Nicotinic receptors	Muscarinic receptors Adrenergic receptors	Insulin receptors	Estrogen Steroid receptors
Effectors	channels	Channels/ enzymes	Enzymes	DNA

<u>https://www.onlineexambuilder.com/p</u> <u>harmacology-I9/exam-110846</u>

Pharmacology Team :

Boys	Girls
عبدالرحمن ذكري	اللولو الصليهم
عبدالعزيز رضوان	روان سعد القحطاني
عبدالرحمن المالكي	أميرة نيازي
فيصل العباد	جواهر أبانمي
فارس النفيسة	رانيا العيسى
خالد العيسى	غادة المزروع
معاذ الفرحان	لمي الفوزان
عبدالرحمن الجريان	نورة الشبيب
محمد خوجة	أسبل ناصر بادخن
عمر التركستاني	أنوار نجيب العجمي