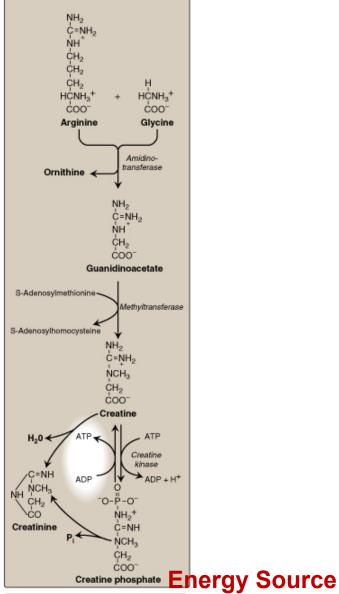
Creatine Metabolism and Collagen Diseases


Sumbul Fatma

Medical Biochemistry Unit Department of Pathology

Objectives

- 1. To study the importance of creatine in muscle as a storage form of energy
- 2. To understand the biosynthesis of creatine
- 3. To study the process of creatine degradation and formation of creatinine as an end product
- 4. To understand the clinical importance of creatinine as a sensitive indicator of kidney function
- 5. To study the structure, function, types, and biosynthesis of collagen
- 6. To understand different diseases associated with collagen

Creatine Metabolism

End product

Figure 21.16 Synthesis of creatine.

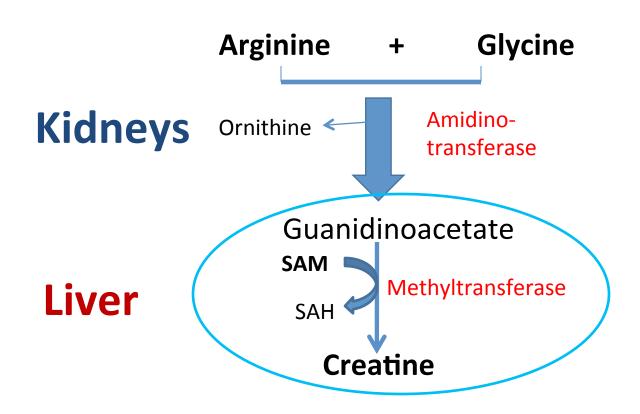
Copyright @ 2005 Lippincott Williams & Wilkins

Creatine Biosynthesis

Three amino acids are required:

Glycine

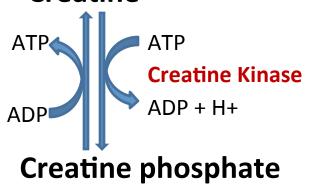
Arginine


Methionine (as S-adenosylmethionine)

Site of biosynthesis:

Step 1: Kidneys

Step 2: Liver

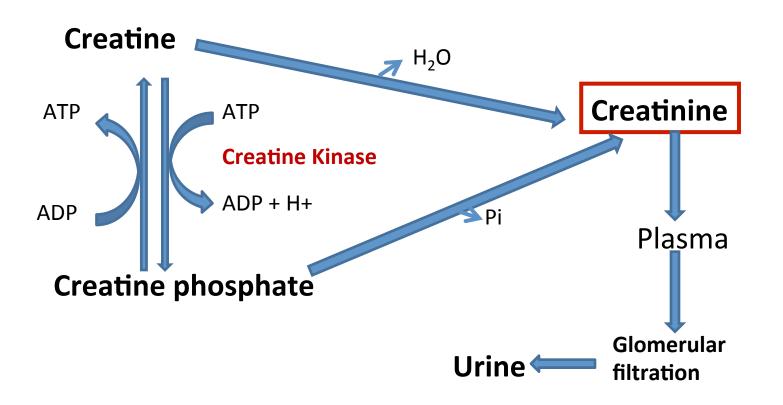

Creatine Biosynthesis

Distribution of body creatine

- From liver, transported to other tissues
- 98% are present in skeletal and heart muscles
- In Muscle, gets converted to the high energy source creatine phosphate (phosphocreatine)

 Creatine

Creatine Phosphate

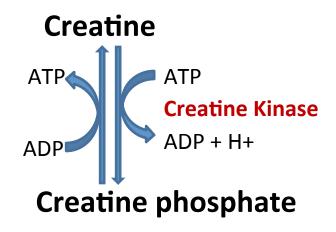

- Is a high-energy phosphate compound
- Acts as a storage form of energy in the muscle
- Provides a small but, ready source of energy during first few seconds of intense muscular contraction

The amount of creatine phosphate in the body is proportional to the muscle mass

Creatine Degradation

- 1. Creatine and creatine phosphate spontaneously form creatinine as an end product
- 2. Creatinine is excreted in the urine
- 3. Serum creatinine is a sensitive indicator of kidney disease (Kidney function test)
- 4. Serum creatinine increases with the impairment of kidney function

Creatine Degradation



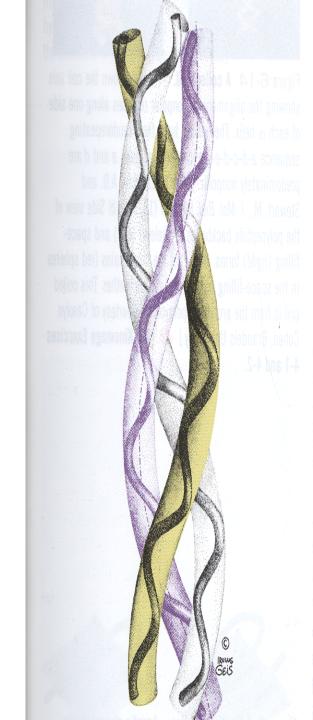
Urinary Creatinine

- A typical male excretes about 15mmol of creatinine per day
- A decrease in muscle mass due to muscular dystrophy or paralysis leads to decreased level of creatinine in urine
- The amount of creatinine in urine is used as an indicator for the proper collection of 24 hours urine sample

Creatine Kinase (CK)

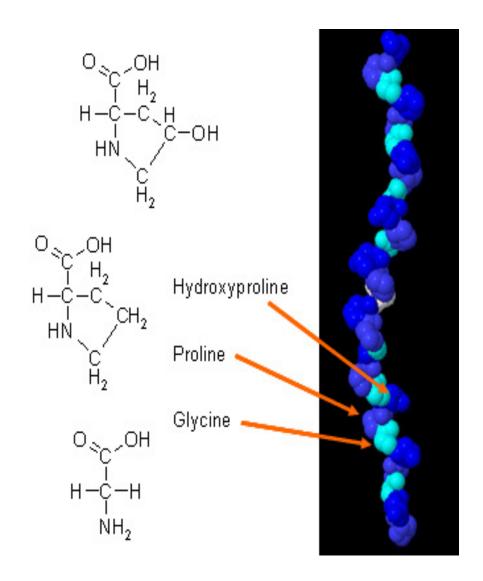
- CK is responsible for the generation of energy in contractile muscular tissues
- CK levels are changed in disorders of cardiac and skeletal muscle

Collagen: Overview


- Most abundant protein in the human body
- Collagens are highly stable molecules, having halflives as long as several years
- A fibrous protein that serves structural functions
- Is a part of connective tissues: bone, teeth, cartilage, tendon, skin, blood vessels
- Has a long rigid structure

Collagen structure: The α -chain

- Collagen α -chain (~1,000 amino acids long), is rich in proline and glycine
- The glycine residues are part of a repeating sequence, -Gly-X-Y-, where X is frequently proline and Y is often hydroxyproline (-Gly-Pro-Hyp)₃₃₃ (Y can be also hydroxylysine).
- Collage consists of three α-chains wound around one another in rope like triple helix
 Compare between the 2 examples of secondary structure of proteins: the collagen helix & the α-helix
- The three polypeptide chains are held together by hydrogen bonds


Structure of Collagen

- Rich in proline and glycine amino acids
- Proline prevents collagen chains to form α-helix because:
 - It does not have back bone amino group (it is a ring structure with secondary amino group)
 - Therefore hydrogen bonding within the helix is not possible

Non-standard amino acids in collagen

- Proline and lysine is converted to hydroxyproline and hydroxylysine by hydroxylase enzymes during post-translational modification
- The enzyme requires vitamin C for its function

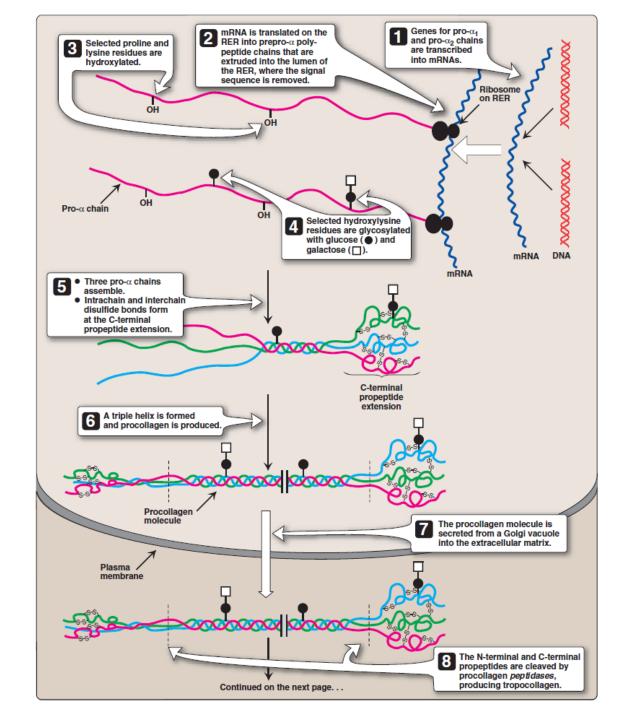
Types of collagen molecules

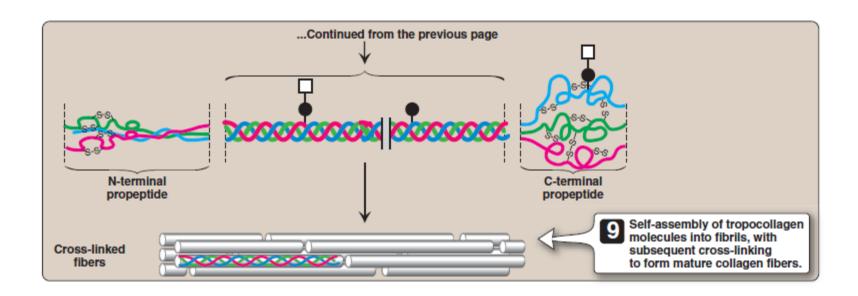
- Type and organization of collagen depends on its function
- Variations in the amino acid sequence of α -chains result in different properties e.g.
 - type I- $(\alpha 1)_2 \alpha 2$
 - Type II- $(\alpha 1)_3$

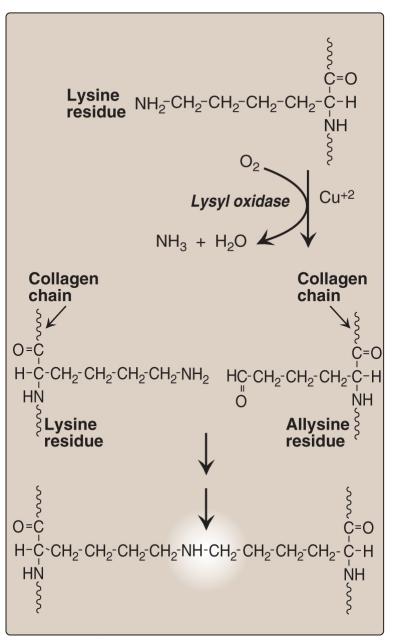
TYPE	TISSUE DISTRIBUTION
	Fibril-forming
1	Skin, bone, tendon, blood vessels, cornea
Ш	Cartilage, intervertebral disk, vitreous body
III	Blood vessels, fetal skin
	Network-forming
IV	Basement membrane
VII	Beneath stratified squamous epithelia
	Fibril-associated
IX	Cartilage
XII	Tendon, ligaments, some other tissues

Copyright @ 2011 Wolters Kluwer Health | Lippincott Williams & Wilkin:

Biosynthesis of Collagen

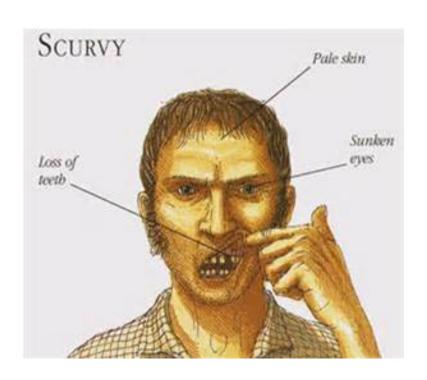

- Synthesized in fibroblasts, osteoblasts and chondroblasts (pre-pro- then pro- and finally mature -collagen)
- Polypeptide precursors are enzymatically modified and form triple helix which is secreted into the extracellular matrix as procollagen
- Procollagen molecules are cleaved by N- and Cprocollagen peptidases releasing triple helical tropocollagen molecules
- Tropocollagen molecules spontaneously associate to form collagen fibrils


Biosynthesis of Collagen ... CONT'D


- Glycosylation of some hydroxylysine residues with glucose or galactose
- Tropocollagen molecules spontaneously associate to form collagen fibrils

Cross-linking of Collagen fibrils

- Lysyl oxidase oxidatively deaminates some of the lysine and hydroxylysine residues in collagen
- The produced reactive aldehydes- allysine and hydroxyallysine condense with lysine or hydroxylysine residues in neighbouring collagen molecules to form covalent crosslinks
- This produces mature collagen fibres



Acquired disease:

Scurvy: due to vitamin C deficiency

Genetic, inherited diseases:
 Ehlers-Danlos syndromes (EDS)
 Osteogenesis imperfecta (OI)

• Scurvy: due to vitamin C deficiency

Ehlers-Danlos syndrome:

can be caused by

- deficiency of lysyl hydroxylase or Nprocollagen peptidase,
- Mutations in the amino acid sequences of collagen I, III and V.
- Characterized by hyperextensibility of joints and skin



Osteogenesis imperfecta (brittle bone disease): Characterized by bones that fracture easily, with minor or no trauma.

Mutations replace glycine with amino acids having bulky side chains preventing the formation of triple helical conformation

- Type I- most common, characterized by mild bone fragility, hearing loss and blue sclerae
- Type II- most severe form and typically lethal in the perinatal period. Fractures are seen in utero.
- Type III- severe form, characterized by multiple fractures at birth, short stature, spinal curvature leading to a humped back (kyphotic) appearance and blue sclerae.

References

- Lippincott, pages 43-49 and 287-288
- Bishop 6th edition, page 223-227