Dynamic Spirometry

Dr. Thouraya Said

Spirometry

It provides an objective measurement of lung function.

It analyzes volume and velocity of expired air

Static test

Performed without regard to time

Relaxed Vital capacity: Max Volume of air expired during relaxed expiration after a maximal inspiration

Dynamic test

Performed at forcible and max effort against time

Measures the rate at which the lung changes volume during forced breathing

Forced vital capacity

The max volume of air that can be forcibly and rapidly exhaled following a max inspiration.

Two types of curves can be obtained

Forced Expiratory Curve

The subject takes a maximal inspiration and then exhales as rapidly, as forcibly,& as maximally as possible.

Duration of the forced effort: 6sec

> A plot of exhaled volume against time:

FEV1 : Volume of air expelled in the 1st sec of forced expiration starting from full inspiration

Plateau: FVC

FEV₁ % or ratio = (FEV₁/FVC) * 100 Fraction of the VC expired during the 1st sec of a forced expiration (NL 70%-80%) FEV₁ is useful measure of how quickly the lungs can be emptied.

The ratio is useful index of airflow limitation

Normal Trace Showing FEV₁ and FVC

Obstructive lung disease

Obstructive Disease

Restrictive Disease

• The normal and restrictive expire fully in 2 sec.

- The obstructive needs more than 2 sec, the curve rises slowly to reach its highest point.
- He may need more than 6 sec.
- He can or not get rid of all VC depending on the severity of the disease.

Volume	Normal	Obstructive	Restrictive
FVC	5	\downarrow or \leftrightarrow (5)	↓ (3)
FEV1	4	↓↓↓ (2)	↓ (2.7)
FEV1%	80%	↓ (40%) (↓ airflow)	↔ or ↑ (90) (Normal airflow)

Results interpretation

 Results are reported as absolute values (litre) ,and as percentages of predicted values based on age, height, sex, ethnicity.

• Normal: Both FVC and FEV1 ≥ 75% of predicted

- If any of FVC and FEV1 is < 75% of predicted, calculate FEV1 ratio:
- FEV1% ≥ 70% -----→ Restrictive
- FEV1% < 70 % ----- → Obstructive

Calculating percentage of predicted values

Patient: 45 year old woman, height 5'3"

FEV_1	Reading	1.43	x 100% = 55% of predicted normal
	Predicted value	2.60	
FVC	Reading	2.5	x = 100% - 82.5% of predicted normal
	Predicted value	3.03	x = 62.5% of predicted formal
FEV ₁	Reading	1.43	- 0.57
FVC	Reading	2.5	- 0.57

Interpretation: patient has mild airflow obstruction as FEV_1 is between 50% and 80% of predicted normal and FEV_1/FVC is <0.7.

This measures exp & insp flow as a function of exhaled volume rather then against time.

9 11

Flow Volume loop

Measurements on flow V loop

 PEFR : Greatest flow achieved during the maneuvre = 6- 12l/sec
 PIFR = max flow speed achieved during forceful inspiratory effort=6l/sec

MEF50: max expiratory flow at 50% of FVC = 4-6 |
FVC measured over the X-axis

Maximal Flow

The inspiratory and the 1st early expiratory flow rates (flows generated near the TLC) are effort (muscle) dependent: the greater one can raise pleural pressure (the harder one forces the air out), the greater the resulting air flow.

Flow Volume Loop and Flow Limitation

At low lung volume, as RV is approached, after a certain pleural pressure (P_{ip}) is reached, flow rate is effort independent (it depends on the size of the bronchi): harder effort generates higher P_{ip} but no greater airflow, this is because the positive P_{ip} that tends to collapse the airway exceeds the airway pressure that tends to keep the airways open: the airways narrow, preventing any further increase in airflow despite greater effort.

Between breaths: no airflow.

- $P_{alv} = P_{atm} = 0.$
- P_{ip} is negative (subatmospheric, e.g. -5).
- Transpulmonary pressure (P_{trans})

 $= P_{alv} - P_{ip} = 0 - (-5) = +5.$

- P_{trans}: force acting to expand the lungs is opposed by the elastic recoil acting to collapse the lungs.
- Volume of lungs stable.

During forced exhalation:

- The expiratory muscles contract, raising both
 P_{alv} and P_{ip}.
- As air exits: gradual loss of pressures (\downarrow Pip, \downarrow P_{alv}).
- P_{alv} drops significantly.
- As pressure within the airway ↓, a point is reached where P_{alv} = P_{ip}: Equal Pressure Point (EPP). Here, P_{trans} is 0.

 Any further loss of pressure within the airways leads to a negative P_{trans} (because P_{ip} > P_{alv}) and collapse of the airways.

 This occurs at low lung volume. Any 个in P_{ip} tends to collapse the airways more, and makes the expiratory flow effort independent. In normal healthy lungs the EPP occurs in the most central airways of the lungs: collapse doesn't occur because airway is supported by cartilage. The effects of negative P_{trans} are minimised.

 In obstructive disease EPP occurs in more peripheral collapsible airways: flow limitation is established. The shape of the downward slope becomes concave.

MEF50↓

Effort independent part of curve: concave

PEFR↓

Inspiratory loop Normal

Obstructive LD

Restrictive LD

Importance of spirometry

Assess physical fitness.

Helps in the diagnosis of certain pulmonary diseases (obstructive & restrictive).

Follow disease progression.

Thank You