Dr. Ishfaq Bukhari Associate Professor of Pharmacology College of Medicine, KSU #### **OBJECTIVES** - * At the end of lecture, the students should: - Discuss the etiology of tuberculosis - Discuss the common route for transmission of the disease - * Discusses the out line for treatment of tuberculosis - Discuss the drugs used in the first & second line # OBJECTIVES (continue) #### Regarding: - * The mechanism of action - Adverse effects - Drug interactions - Contraindication - Discuss tuberculosis & pregnancy - Discuss tuberculosis & breast feeding Mycobacterium tuberculosis, slow growing, an acid fast bacillus ❖ Robert Koch was the first to see Mycobacterium tuberculosis with his staining technique in 1882. #### Disease information: Each year, 1% of the global population is infected. More than one third of the world's population has **tuberculosis**. # YOUR COUGHS AND SNEEZES #### SPRAY SPREADS COLDS · FLU · TUBERCULOSIS THE RESIDENCE THERE OF Christman Saule made the Poster Posterial #### **Tuberculosis** **Common sites of infections** - * Apical areas of lung - * Renal parenchyma - Growing ends of bones #### **Treatment Of Tuberculosis** - *Preventing development of drug resistance is the most important reason to use drug combination. - *Periods of treatment (minimum 6 months) - *Drugs are divided into two groups: - 1. First line 2. Second line # Antimycobacterial drugs #### First line - *Isoniazid (INH) - * Rifampin - *Ethambutol - * Pyrazinamide Given for first 8 weeks, followed by INH/RIF for 18 weeks Streptomycin (should not be the first line choice) # Never use a single drug therapy - *Isoniazid –rifampin combination administered for 9 months will cure 95-98% of cases. - *Addition of pyrazinamide/ethambutol for this combination for the first 2 months allows total duration to be reduced to 6 months. #### **Isoniazid** - *Bacteriostatic for resting bacilli. - *Bactericidal for rapidly growing bacilli. - *Is effective against intracellular & extracellular bacilli #### **Mechanism Of Action** Inhibits the synthesis of mycobacterial cell wall (inhibit the synthesis of mycolic acid) #### Clinical uses - * Treatment of TB - Treatment of Latent TB in patients with positive tuberculin skin test - Prophylaxis against active TB in individuals who are in great risk. #### Adverse effects - *Peripheral neuritis - (pin & needles sensation in the feet - *Optic neuritis & atrophy. - (Pyridoxine should be given in both cases) - *Hepatitis (toxic metabolites) - Hepatitis with INH, is age dependent; it is rare in persons younger than 20 years, risk increases with age and alcohol use # Drug Interactions of INH - Enzyme inhibitor - *Slow and fast acetylators. - *Bactericidal - Inhibits RNA synthesisby binding to DNA dependent RNA polymerase enzyme. ## Site of Action (similar to INH) - *Intracellular bacilli - *Extracellular bacilli #### Clinical uses *Treatment of TB *Prophylaxis. #### Adverse effects - *Harmless red-orange discoloration of body secretions (saliva, sweat, tears). Tell the patient about this effect. Can permanently stain contact lenses. - *Hepatitis less common compared to INH - Flu-like syndrome - * Hemolytic anemia # **Drug Interactions** - Enzyme inducer - Clincally significant drug interactios such as warfarin, methadone will be metabolized faster #### **Ethambutol** *Bacteriostatic *Inhibitor of mycobacterial arabinosyl transferase (alters the cell barrier) disrupts the assembly of mycobacterial cell wall. # Site Of Action (similar to INH) *Intracellular & Extracellular bacilli #### Clinical uses *Treatment of tuberculosis in combination with other drugs. #### Adverse effects Impaired visual acuity *red-green color blindness. Ethambutol is contraindicated in children under 5 years. # Pyrazinamide - *Bacteriostatic - *Mechanism of action is unknown. #### Site Of Action * Active against Intracellular Bacilli #### Clinical uses - *Mycobacterial infections mainly in multidrug resistance cases. - *It is important in short –course (6 months) regimen. - *Prophylaxis of TB. #### Adverse effects *Hepatotoxicity (common) *Hyperuricemia (gouty arthritis) Drug fever & skin rash # Streptomycin - *Bactericidal - *Inhibitors of protein synthesis by binding to 30 S ribosomal subunits. - *Active mainly on extracellular bacilli #### Clinical uses *Severe, life-threating form of T.B. as meningitis, disseminated disease. - ***** Ototoxicity - *Nephrotoxicity - *Neuromuscular block # Indication of 2nd line treatment - *Resistance to the drugs of 1st line. - *Failure of clinical response - *There is contraindication for first line drugs. - * Used in typical & atypical tuberculosis - * 2nd line drugs are more toxic than 1st line drugs ### Ethionamide *Inhibits the synthesis of mycolic acid ## Clinical uses *As a secondary line agent ,treatment of TB. ## **Adverse Effects** Terratogenic Poorly tolerated Because of: - *Severe gastric irritation & - *Neurological manifestations # Fluoroquinolones (Ciprofloxacin) ***Effective against multidrug- resistant tuberculosis.** ### Rifabutin - * RNA inhibitor - Cross –resistance with rifampin is complete. - *Enzyme inducer ### Clinical uses *Effective in prevention &treatment of T.B. *In prevention & treatment of atypical TB. ### **Adverse Effects** ***GIT** intolerance *Orange-red discoloration of body secretions. # Aminosalicylic Acid (PAS). *Bacteriostatic *Inhibits Folic acid synthesis. ### Clinical uses *As a second line agent is used in the treatment of pulmonary & other forms of tuberculosis. ## Adverse effects *GIT upset * Crystalluria # TB & Pregnancy - Untreated TB represents a great risk to the pregnant woman & her fetus than the treatment itself. - First line (INH, Ethmabutol and rifampicin) drugs are given for 9 months in normal doses - * Streptomycin not used # TB & Breast Feeding * It is not a contraindication to receive drugs, but caution is recommended