Biochemistry Globular proteins

There is no elevator to success, you have to take the stairs !

Important

- Extra Information.
- Doctors slides

Revised by شوق الأحمري & طراد الوكيل

436 Biochemistry team

1957

Objectives:

- 1. describe the globular proteins using common examples like hemoglobin and myoglobin.
- To study the structure and functions of globular proteins like: Hemoglobin (a major globular protein) Myoglobin, and γ-globulins (immunoglobulins).
- 3. To know the different types of hemoglobin and difference between normal and abnormal hemoglobin .
- 4. To understand the diseases associated with globular proteins .

- Amino acid chains fold into shapes that resemble spheres are called globular proteins

Globular protein

- This type of folding increases solubility of proteins in water :

Polar groups on the protein's surface

They come from the side chain of amino acid

Hydrophobic groups in the interior

- Fibrous proteins are mainly insoluble structural proteins

The sequence of the protein is what determine the structure and the structure is what determine the function of it -Globular proteins have functional properties. ex: they can work as enzymes -Fibrous proteins are structural only.

What makes the protein soluble is the ability to interact with water

Hemoglobin

A major globular protein in humans Composed of four polypeptide chains: (subunits) Two α and two β chains Contains two dimers of $\alpha\beta$ subunits Held together by non-covalent interactions Each chain is a subunit with a heme group in the center that carries oxygen A Hb molecule contains 4 heme groups and carries 4 molecules of O_2

the bond within the dimer itself is very strong because it has covalent and Hydrophobic bonds .while, the bond between the 2 dimers is weaker because it has ionic and van der val bond .

- 1 hemoglobin > 4 heme group > 4 oxygen molecules.

Hemoglobin Structure

Biochemistry team 436

Types of hemoglobin

Normal :	Abnormal: not able to transport O2 due to the structure of it.	
HbA (97%) It is the major hemoglobin	Carboxy – HB: (IMPORTANT NOTES) CO replaces O_2 and binds 220X tighter than O_2 (Smokers) it can produce toxic concentrations of carboxyhemoglobin in the blood for example increased levels of CO are found in the blood of tobacco smokers. CO toxicity appears to result from a combination of tissue hypoxia and direct CO- mediated damage at cellular level.	
HbA ₂ (2%)	Met- HB: Contains oxidized Fe ³⁺ (~2%) that cannot carry O ₂	
HbF (1%) fetal or neonates It is increased in hepatocellular carcinoma patients	Sulfur-HB: Forms due to high sulfur levels in blood (irreversible reaction) (increased in people who have been using sulfur containing drugs for a long period of time)	
HbA _{1c}		

Hemoglobin A (O₂ binding to hemoglobin)

T form: The deoxy form of hemoglobin is called the "T, or taut (tense) form. In the T form, the two alpha beta dimers interact through a network of ionic bonds and hydrogen bonds that constrain the movement of the polypeptide chains.

The T conformation is the low-oxygen-affinity form of hemoglobin.

R form: The binding of o₂ to hemoglobin causes the rupture of some of the polar bonds between the dimers, allowing movement. This leads to a structure called the "R" or relaxed form. The R conformation is the highoxygen- affinity form of hemoglobin.

Types of normal hemoglobin

- HbA1c is a marker for diabetes, and it is modified form of HbA2.
- The most abundant form of glycosylated hemoglobin is HbA1c
- Hb A1c identifies

 how long has the patient been maintaining his/her
 blood glucose level for a period of 2-3 months; therefore it's a better marker for diagnosing and monitoring diabetic patients)

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

LUNGS Hemoglobin function CO₂ is released O₂ binds to from hemoglobin hemoglobin Hemoglobin is found exclusively in red blood cells. Extra information: Hb's main Carrying oxygen from the lungs to function is to tissues. transport O₂ from the lungs Carries carbon dioxide from to the capillaries NHCOO of the tissues, tissues back to the lungs. 02 0, and can carry 4 Fe²⁺ Fe²⁺ molecules of O_2 . Fe²⁺ Fe²⁺ oxygenated Hb called Normal levels (g/dL): Also Hb can Fe²⁺ Fe²⁺ Fe²⁺ Fe²⁺ oxyhemoglobin transport H+ and But Hb that has CO2 02 0, CO₂ from the Males: 14-16 NHCOO called tissues to the Females: 13-15 lungs. carbaminohemoglobin Carbaminohemoglobin Oxyhemoglobin And most of CO2 is hydrated and bicarboniated. And it's produced

in the **RBCs**

CO₂ binds to

hemoglobin

 O_2 is released

from hemoglobin

Hemoglobin in diseases

All are autosomal recessive

Hemoglobinpathies are genetic disorders of hemoglobin are caused by: *Synthesis of structurally abnormal Hb qualitative *Synthesis of insufficient quantities of normal Hb quantitive OR A combination of both

Hemoglobinopathies	Description	
Sickle cell disease (HbS)	Caused by a single mutation in B-globin genea	Glutamic acid at position 6 in HbA is replaced by valine The mutant HbS contain B ^s chains The shape of RBC's are sickled Cause sickle cell anemia. It is caused by single point mutation
Hemoglobin C disease (HbC)		Glutamic acid at position 6 in HbA is replaced by lysine Cause a mild form of hemolytic anemia (no specific therapy is required)

Hemoglobin in diseases cont.

Hemoglobinopathies	Description	
Methemoglobinemia	Caused by the oxidation of Hb to ferric Fe ³⁺ state Methemoglobin cannot bind to O ₂ Caused by certain drugs, reactive O ₂ species, and NADH-cytochrome b5 reductase deficiency Chocolate cyanosis: the brownish-blue color of the skin and blood (IMPORTANT)	
Thalassemia	Defective synthesis of either alpha or beta global chains due to gene mutation. Beta-thalassemia has higher risk than alpha-thalassemia because beta-thalassemia has only two copies of	Alpha-thalassemia: - Synthesis of alpha- globin chain is decreased or absent - Cause mild to moderate hemolytic anemia.
	<u>the gene while alpha-thalassemia has four</u> <u>copies</u> . That's why beta-thalassemia <u>need regular</u> <u>blood transfusion</u> and <u>cause severe anemia</u>	Beta thalassemia: Synthesis of beta-globin chain is decreased or absent Cause severe anemia Need regular blood transfusion.

Myoglobin

A globular hemeprotein in heart and skeletal muscle

Acts as O₂ carrier that increases the rate of transport of O₂ within muscle cell.

Stores and supplies oxygen to the heart and skeletal muscle onlyContains a single polypeptide chain forming a single subunit with eight a-helix structuresIt gives red color to skeletal musclesThe interior of the subunit is composed of nonpolar amino acidsSupplies oxygen during aerobic exerciseThe charged (polar) amino acids are located on the surface (forming hydrogen bond) while The heme group is present at the center of the molecule	Function	Structure
It gives red color to skeletal musclesThe interior of the subunit is composed of nonpolar amino acidsSupplies oxygen during aerobic exerciseThe charged (polar) amino acids are located on the surface (forming hydrogen bond) while The heme group is present at the center of the molecule	Stores and supplies oxygen to the heart and skeletal muscle only	Contains a single polypeptide chain forming a single subunit with eight a-helix structures
Supplies oxygen during aerobic exercise The charged (polar) amino acids are located on the surface (forming hydrogen bond) while The heme group is present at the center of the molecule	It gives red color to skeletal muscles	The interior of the subunit is composed of nonpolar amino acids
	Supplies oxygen during aerobic exercise	The charged (polar) amino acids are located on the surface (forming hydrogen bond) while The heme group is present at the center of the molecule

Single chain will bind to one Heme. So Myoglobin molecule will bind to one O₂

Explanation: Forming the structure of myoglobin is stabilized by hydrophobic interaction.

Myoglobin in diseases

Myoglobinuria: Myoglobin is excreted in urine due to muscle damage (rhabdomyolysis it means the

destruction of muscle cells

May cause <u>acute renal failure</u>

The most common causes of myoglobinuria in adults are : trauma, alcohol and drugs. IMPORTANT NOTE: The cause of myoglobinuria is muscle damage and myoglobinuria may cause acute renal failure

Immunoglobulins

- Defensive proteins produced by the B-cells of the immune system
- Y-shaped structure with 2 heavy and 2 light polypeptide chains
- Neutralize bacteria and viruses

Types: IgA, IgD, IgE, IgG, IgM

Explanation: The antibodies bind with the antigen and makes immune complex which trigger the immune system and the macrophages start engulf this complex

Summary

Hemoglobin: 4 Chains Transports O2 and CO2

<u>Normal HB:</u> 4 Types -HbA –HbA2 –HbF –HbA1C

<u>Abnormal HB:</u> 3 Types -Carboxy Hb –Met Hb –Sulf Hb

<u>Hemoglobinopathies:</u> 4 types
1- Sickle cell disease (HbS)
2- Hemoglobin C disease (HbC)
3- Methemoglobinemia
4- Thalassemia (alpha or beta)

Myoglobin: 1 Chain Stores O2 Gives red color to skeletal muscles

<u>Myoglobin disease</u>: Myoglobinuria

Immunoglobulins: 4 Chains Neutralizes Bacteria

5 Types: Ig G, A, M, E, D

Quiz

SAQ

https://www.onlineexambuilder.com/ globular-proteins-saq/exam-127554 MCQ'S

https://www.onlineexambuilder.com/ globular-proteins/exam-127546

https://www.onlineexambuilder.com/gl obular-proteins/exam-128219

Helpful video

Hemoglobin Video: https://www.youtube.com/watch?v=89fe CoBXRGE

TEAM MEMBERS

Biochemistry team 436

1- Zinah Alkaaf

2- Ruba Barnawy

3- Reem Alserjany

4-Lama Altamimi

5- Reema Alshaea

6- Shatha Algeheb

7-Rana Barasain

8-Heba Alnasser

THANK YOU PLEASE CONTACT US IF YOU HAVE ANY ISSUE

•

• Review the notes

<u>https://www.youtube.com/watch?v=89feCoBXRGE</u>

• Lippincott's Illustrated Reviews: Biochemistry, 6th E

@436Biochemteam

Biochemistryteam436@gmail.com

