

Respiratory Block

Lecture Two

Immunology of Tuberculosis

Objectives:

- To know how M. tuberculosis infection is contracted and its initial encounter with the immune system.
- To understand delayed type of hypersensitivity reaction against M. tuberculosis
- To be familiar with the possible outcomes of the infection with M. tuberculosis in immuno-competent and immunocompromised hosts.
- To know the basis of interferon gamma release assay and its potential to detect latent tuberculosis.
- To understand the basis of tuberculin test and its importance in gauging immunity against M. tuberculosis
- Important.
- Extra notes.
- Doctors' notes

Tuberculosis (TB)

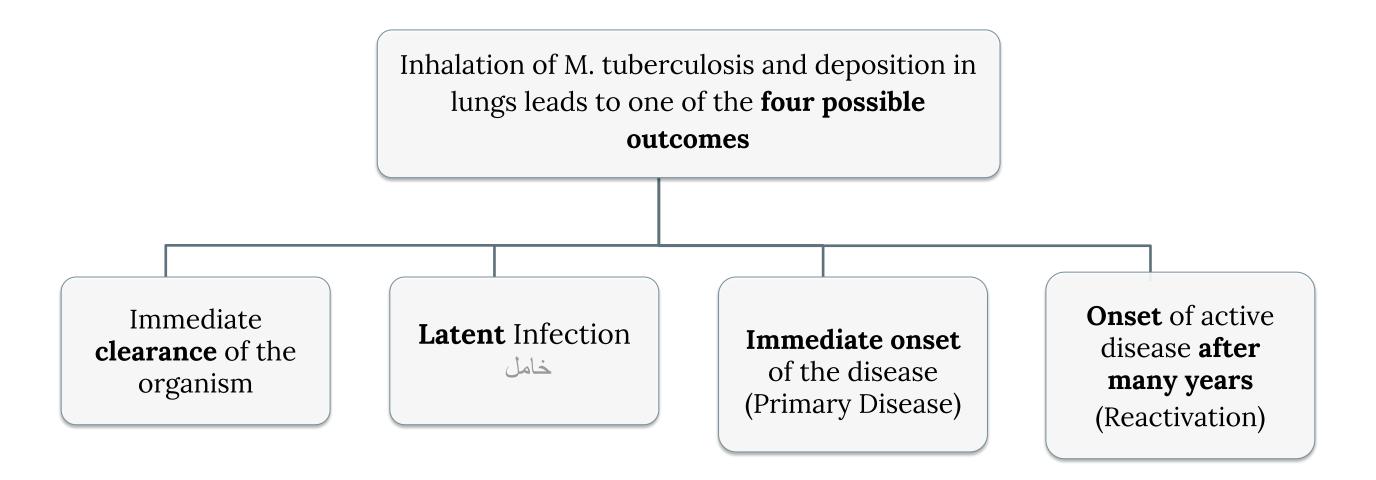
It's an example of an infection in which **protective** immunity & **pathologic** hypersensitivity coexist, and the lesions are caused mainly by the host response (immune cells response).

Introduction:

- Mycobacterium tuberculosis is the **second** most common infectious cause of death in adults worldwide.
- The **human host** serves is the natural reservoir for M. tuberculosis.
- The disease incidence is magnified by the concurrent epidemic of human immunodeficiency virus (HIV) infection.

Mode of transmission:

- Infection is acquired by **inhalation** of M. tuberculosis in aerosols and dust (airborne transmission).
- Infected people **cough up** large numbers of mycobacteria.
- The organisms waxy outer coat can withstand drying and survive for long periods in air and house dust.


Virulence factors:

- Waxy coat blocks phagocyte enzymes
- Catalase-peroxidase, which resists the host cell oxidative response
- Lipoarabinomannan (LAM) a glycolipid:
 - Can induce cytokines and resist host oxidative stress.
 - Interfere with antigen presentation by MHC class II molecules for priming CD4 T cells.
- The **majority** of individuals in the general population who become infected with M. tuberculosis **never develop** clinical disease
- This demonstrates that the **innate and adaptive immune response** of the host in controlling TB infection is effective.

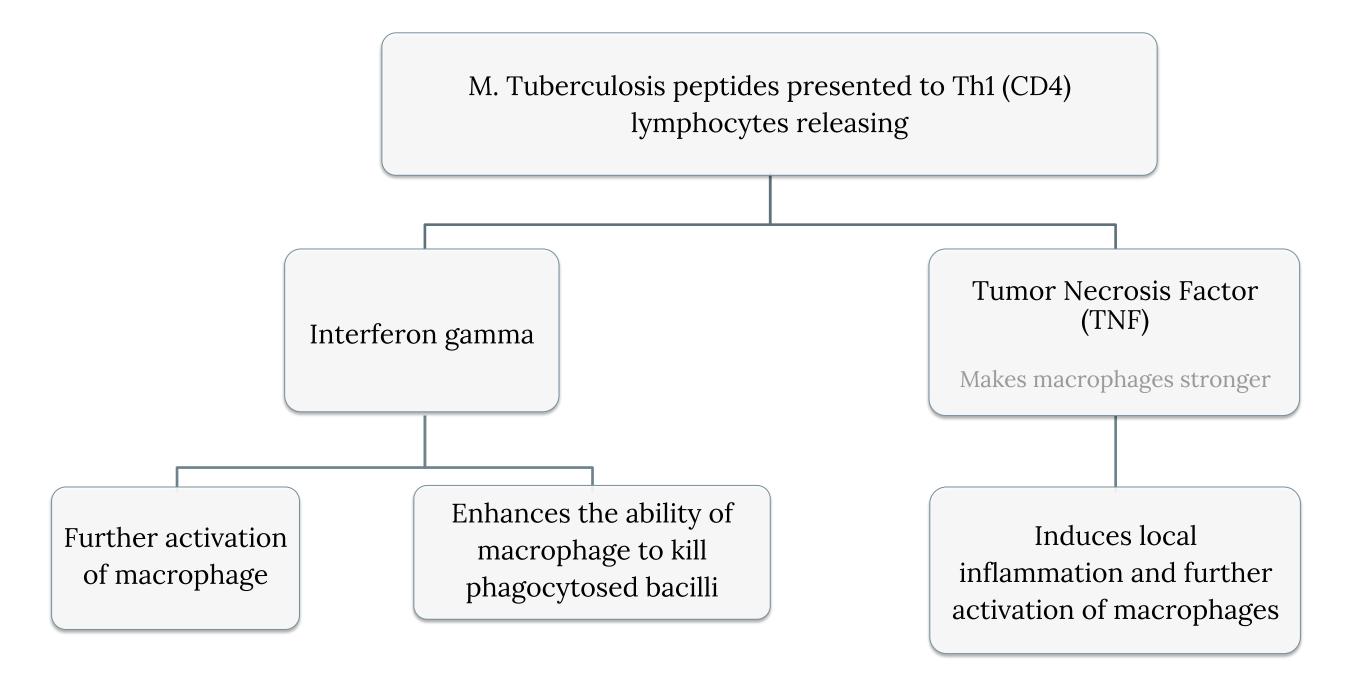
Host factors:

- Innate immunity.
- The tubercle bacillus ultimately gets taken up by <u>macrophages</u> and has evolved several strategies to evade early intracellular killing mechanisms. These include:
 - Resistance to **reactive oxygen** intermediates (ROIs).
 - Inhibition of **phagosome-lysosome fusion**.
 - Inhibition of **phagosome acidification**.
 - Escape from the phagosomal compartment into the **cytoplasmic space**.

Natural History of Infection

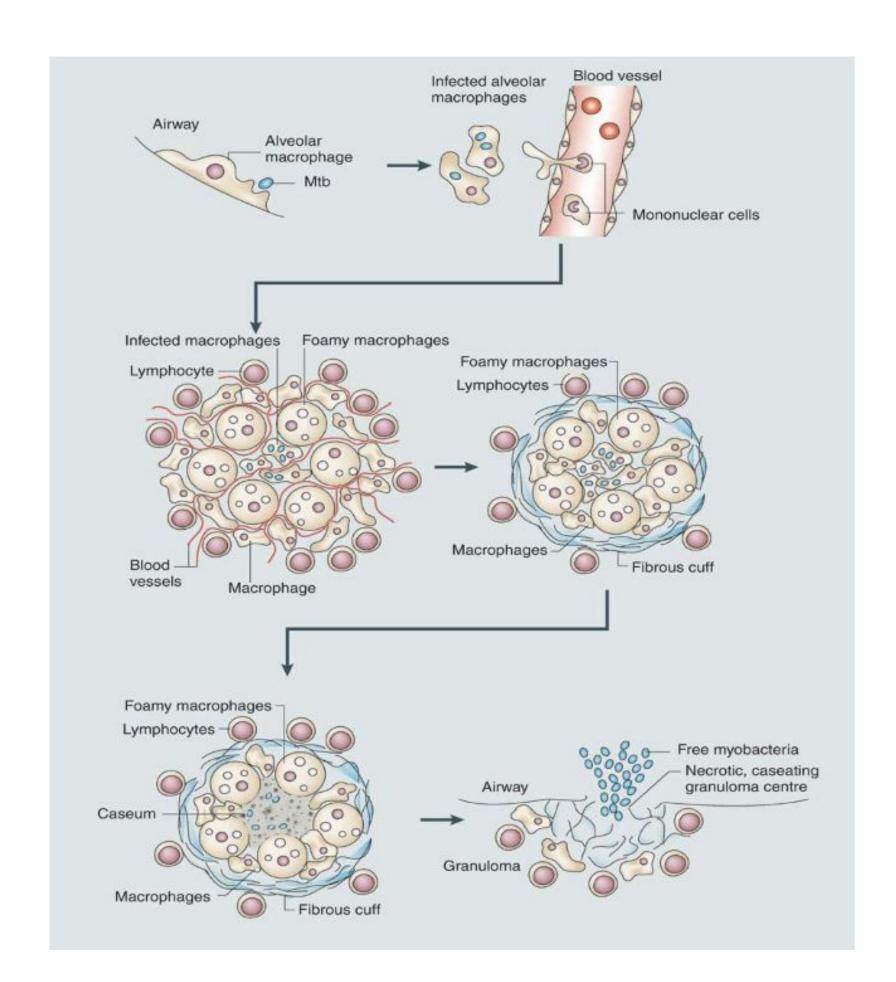
Primary Disease Steps

(Approximately 10% of infected individuals):


- 1. The **tubercle bacilli establish** infection in the lungs after they are carried in droplets to reach the alveolar space.
- 2. If the innate defense system of the host fails to eliminate the infection, the **bacilli proliferate inside** alveolar **macrophages** and eventually kill the cells.
- 3. The infected **macrophages produce cytokines and chemokines** that attract other phagocytic cells, which eventually form a nodular granulomatous structure called the **tubercle**.
- 4. If the bacterial replication is not controlled, the tubercle enlarges and the bacilli **enter local draining lymph nodes**.
- 5. This leads to **lymphadenopathy**, a characteristic manifestation of primary TB.
- 6. The lesion produced by the expansion of the tubercle into the lung parenchyma and lymph node involvement is called the **Ghon complex**.

Ghon's and Ranke complex:

- The lung lesions (tubercles –small granulomas (Ghon's focus) and the enlarged lymph nodes constitutes **Ghon's complex**.
- Tubercles may heal become **fibrotic or calcified** and persist as such for a lifetime **(Ranke Complex)**.
- 7. The bacilli continue to proliferate until an effective cell-mediated immune (CMI) response develops, usually **two to six weeks** after infection.
- 8. Failure by the host to mount an effective CMI response and tissue repair leads to progressive **destruction of the lung** by:
 - Tumor necrosis factor (TNF)-alpha.
 - Reactive oxygen.
 - Nitrogen intermediates.
 - Contents of cytotoxic cells (granzymes, perforin).
- 9. All of the above may contribute to the development of **caseating necrosis** that characterizes a tuberculous lesion.



Weeks after infection

Outcomes:

Bacilli can spread mechanically by erosion of the caseating lesions into the lung airways; at this point the host becomes infectious to others Outcomes

Miliary and chronic TB

Unchecked bacterial growth may lead to hematogenous spread of bacilli to produce disseminated TB.

What is Disseminated TB?

Disseminated disease with lesions resembling millet seeds* has been termed miliary TB. *على شكل بذور موزعة في مكان العدوى

Most common presentation: TB meningitis.

Chronic TB:

- In the absence of treatment, death occurs in 80 percent of cases.
- The remaining patients develop **chronic disease** or **recover**.
- Chronic disease is characterized by repeated episodes of healing by fibrotic changes around the lesions and tissue breakdown.
- Complete spontaneous eradication of the bacilli is **rare**.

Latent Tuberculosis Steps

Antigen presentation in the lymph nodes
(Delayed type of hypersensitivity)

• Activation of CD4+ (Th1) lymphocytes

• (a phase coinciding with high rate of replication of bacilli)

• Low induction of CD8+ lymphocytes capable of recognizing antigen and activating macrophages by production of IFN- $\!\gamma$

• Later induction of high number of CD8+ with increased production of IFN- γ and cytotoxic activity (a phase coinciding with stabilization of bacterial growth)

• Bacterial load remains constant and infection is in latency (Latent TB)

3

Latent Tuberculosis

Populated by non-replicating bacilli rather than a population of growing bacilli.

Why? because the immune response is mainly directed towards antigens secreted by **growing** bacilli. Therefore non-replicating bacilli will be less obvious to the protective cellular response. This state correlates (ترتبط) directly with an innate resistance to anti-MTB drugs. (TB drugs aren't effective in latent TB because the bacteria isn't proliferating while they act on the Bacteria's DNA)

Reactivation disease (2^{ry} TB)

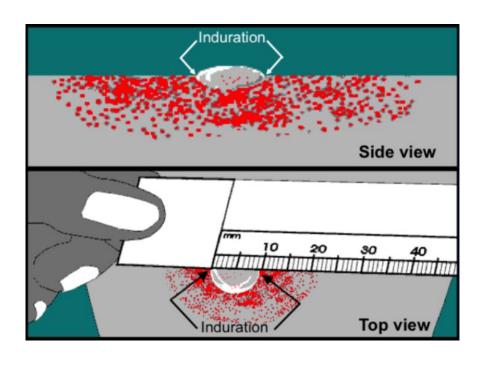
Reactivation TB results from **proliferation of a previously dormant bacteria** seeded at the time of the primary infection.

Among individuals with latent infection and no underlying medical problems, reactivation disease occurs in approximately **5% to 10%** of cases.

Immuno-suppression is clearly associated with reactivation TB.

Process in reactivation TB tends to be:

- **Localized** (in contrast to primary disease)
 - The lesion typically occurs at the lung apices
 - Since it's localized, little regional lymph node involvement and **less caseation**.
- **Disseminated** disease is unusual


The role of the granuloma as a host protective factor needs a revision in thinking as it may also play a role in protecting the tubercle bacilli for its long-term survival in the host

Test for Immunity Against TB:

Delayed hypersensitivity skin test **Tuberculin test** or (**Mantoux**).

- Intradermal injection of PPD (purified protein derivative)
- Correct interpretation of the result is unreliable in immuno-compromised states affecting CMI (cell mediated immunity).
- Test result is interpreted by measuring the diameter of the induration after 48 hours.

Delayed-Type Hypersensitivity (DTH) Response:

(Type IV Hypersensitivity) remember types of hypersensitivity we took in foundation block?

- The DTH response does not correlate with protection against TB, since numerous BCG vaccination trials have demonstrated that disease can occur in those who mount a DTH response.
- As a result, the **protective T** cell response must be distinguished from the **T** cell response **associated** with **DTH**.
- An in vitro interferon-gamma release assay has been developed. (to help us differentiate between DTH and Latent TB)

IFN-γ release assay:

- The assay is an alternative to the tuberculin skin test (TST) for **detection of latent M. tuberculosis** infection in human hosts.
- The test measures interferon-gamma released into blood from T cells when they are activated by M. tuberculosis antigens in vitro.
- The tests use antigens specific to M. tuberculosis including the early secretory antigenic target 6 (ESAT-6) and culture filtrate protein (CFP-10).
- These **proteins are absent** in vaccine strain **BCG**, or **M**. **bovis**.
- This enables the test to differentiate those latently infected with M. tuberculosis from those vaccinated with BCG.

Take home message

- After exposure to M. tuberculosis immune handling of the infection determines the final outcome.
- Relatively small proportion of individuals develop primary disease.
- Reactivation of tuberculosis can occur in patients who are immuno-compromised.
- Tuberculin test should be interpreted with caution as it may be difficult to differentiate between DTH against M. tuberculosis and latent disease.

Useful videos:

https://youtu.be/yR51KVF4OX0

https://youtu.be/IGZLkRN76Dc

MCQs

1-	The M. tuberculosis proliferate inside which of the following inflammatory cell:
	A) neutrophil b) dendritic cell c) macrophage
2-	Most important cytokine in TB that enhance further activation of macrophage:
	A) IL-5 B) IF- GAMMA C) IF-ALPHA D) IL-13
3-	- Which type of immunity is not important in TB:
	a) innate immunity b) cell mediated immunity c) humoral immunity
4-	- Type of hypersensitivity in TB:
	A) I B) II C) III D) IV
5-	Interfere with antigen presentation by MHC class II molecules for priming CD4 T cells
	A) Catalase-peroxidase b) Lipoarabinomannan c) ESAT-6 d) IF-gamma
6-	- Tubercles may heal and become fibrotic or calcified:
	a) Ghon's complex b) latent TB c) Ranke Complex
7-	which of the following will have negative Tuberculin test:
	a) latent TB b) Ghon's complex c) BCG vaccine d) Miliary TB

Contact us

Email: <u>Immunology436@gmail.com</u>

Twitter: Immunology436

Team Leaders

Ghaida Alsaeed

Basel almeflh

Team members

Abdulmajeed almutairi

Abdulmajeed alammar

Basel alanazi

Moayed Ahmed