Oxidative Stress

Cardiovascular System Block

Objectives

By the end of this lecture, the First Year students will be able to:

- Define oxidative stress
- Understand the harmful effects of oxidative stress to the cell and its diseases
- List the types, sources and effects of Reactive Oxygen Species (ROS)
- List various antioxidants in the body
- Understand the role of glutathione system in detoxifying oxidants in the body
- Discuss how G6PD deficiency leads to oxidative stress
- Understand the role of Reactive Nitrogen Species (RNS) in contributing to oxidative stress
- Correlate the role of oxidative stress to pathogenesis of atherosclerosis

Overview

- Oxidative stress
- * Reactive Oxygen Species (ROS): types, sources, effects
- Antioxidants
- Glutathione system
- ❖ G6PD deficiency
- Nitric oxide (NO): Reactive Nitrogen Species (RNS)
- Oxidative stress and atherosclerosis

Oxidative stress

- ❖ A condition in which cells are exposed to excessive levels of:
 - Reactive Oxygen Species (ROS) or
 - Reactive Nitrogen Species (RNS)
- Cells are unable to neutralize their deleterious effects with antioxidants
- Oxidative stress is implicated in atherosclerosis, CAD, ageing

Oxidative stress

- Cellular imbalance of oxidants and antioxidants damages:
 - * DNA, proteins, lipids
- Diseases due to oxidative stress:
 - Inflammatory diseases (rheumatoid arthritis), atherosclerosis, CAD, obesity, cancer, G6PD deficiency hemolytic anemia

Reactive Oxygen Species (ROS)

- Incomplete reduction of oxygen to water produces ROS
- * ROS are continuously formed:
 - * As byproducts of aerobic metabolism
 - * Thru reactions with drugs and toxins
 - When cellular antioxidant level is low
 - Creating oxidative stress in cell
- ❖ ROS can damage DNA, proteins, unsaturated lipids → cell death
- Cells have protective antioxidant mechanisms that neutralize ROS

Reactive Oxygen Species (ROS)

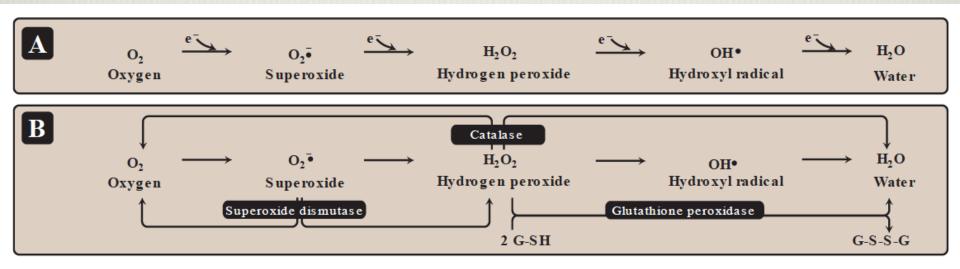
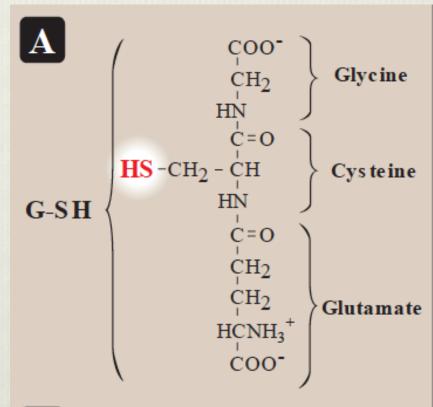


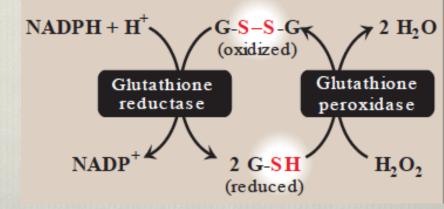
Figure 13.5

A. Formation of reactive intermediates from molecular oxygen. $e^- = e$ lectrons. B. Actions of antioxidant enzymes. G-SH = reduced glutathione; G-S-S-G = oxidized glutathione. (See Figure 13.6B for the regeneration of G-SH.)

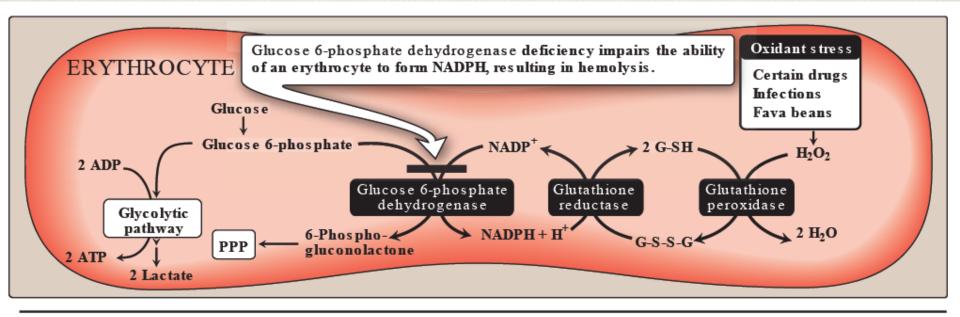
Types and sources of ROS


- Free radicals:
 - * Superoxide $(O_2^{\bullet-})$
 - Hydroxyl radical (OH•)
- ❖ Non-free radical:
 - * Hydrogen peroxide (H_2O_2)
- * Sources:
 - Aerobic metabolism
 - Partial reduction of molecular oxygen in ETC
 - Ingestion of drugs, toxins, chemicals

Antioxidants


- * Enzymes:
 - Superoxide dismutase
 - Catalase
 - Glutathione system
- Vitamins:
 - * Vitamins A, C, E
 - β-Carotene

Glutathione system


- Present in most cells
- Chemically detoxifiesH₂O₂
- Catalyzed by glutathione reductase
- Produces NADPH that reduces H₂O₂

B

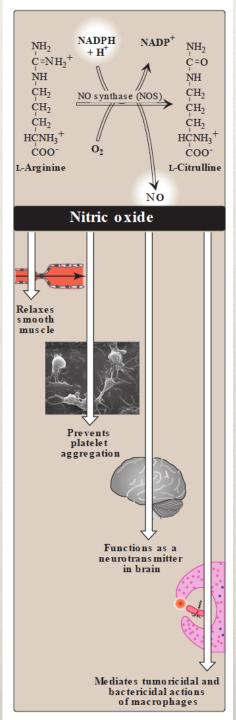
G6PD deficiency

Figure 13.10

Pathways of glucose 6-phosphate metabolism in the erythrocyte. NADP(H) = nicotinamide adenine dinucleotide phosphate; G-SH = reduced glutathionine; G-S-S-G = oxidized glutathionine; PPP = pentose phosphate pathway.

- Leads to NADPH deficiency
- Cells are unable to reduce free radicals
- Oxidation of cellular proteins is increased causing impaired cell functions

Effects of ROS


- Lipid peroxidation (polyunsaturated fatty acids)
- DNA damage
- Protein denaturation
- Cytoskeletal damage
- Chemotaxis

- Cell signaling effects
 - Release of Ca²⁺ from intracellular stores
- Altered vascular tone
- Increased endothelial cell permeability

Nitric oxide (NO)

- Endothelial-derived relaxing factor
- Causes vasodilation by relaxing vascular smooth muscle
- * NO is a gas with short half-life (3-10 sec)
- ❖ NO + Oxygen/Superoxide → Nitrates, Nitrites, Peroxynitrite (O=NOO-)
- Peroxynitrite is a Reactive Nitrogen Species (RNS)

Synthesis and some of the actions of nitric oxide (NO). NADPH = reduced nicotinamide adenine dinucleotide phosphate. [Note: Flavin mononucleotide, flavin adenine dinucleotide, heme, and tetrahydrobiopterin are additional coenzymes required by NOS.]

Nitric oxide (NO)

- * NO is produced by nitric oxide synthase:
 - * eNOS in the endothelium (vaso-relaxation)
 - * nNOS in the neural tissue (neurotransmission)
 - * iNOS in macrophages, neutrophils (infection)
 - * bNOS (bacterial)
- iNOS activity (normally low) increased by infection and pro-inflammatory cytokines
- ❖ Activated macrophages produce $O_2^{\bullet^-}$ radical + NO → OH• radical → highly bactericidal
- ❖ Increased iNOS activity → free radicals → oxidative stress

Oxidative stress and atherosclerosis

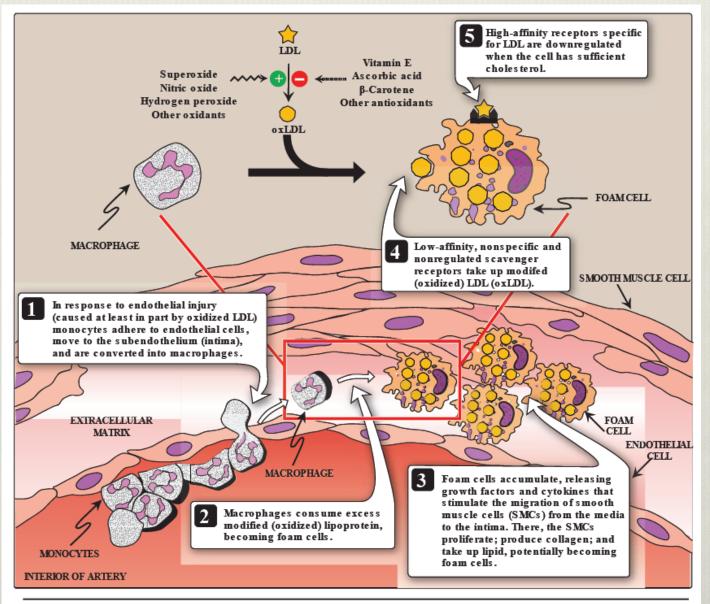


Figure 18.22

Role of oxidized lipoproteins in plaque formation in an arterial wall. LDL = low-density lipoprotein.

Take home message

- * Oxidative stress is due to excessive production of ROS and NOS in the cells.
- Cells neutralize these oxidants by a number of antioxidant processes.
- * Imbalance between oxidants and antioxidants in the cells can result in the development of many diseases including atherosclerosis.

References

* Lippincott's Biochemistry, 6th Edition, Chapter 13, pp. 148-152. Lippincott Williams & Wilkins, New York, USA.